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Disclaimer

The image analysis workflow for lobule detection (Section 3.1), the statistical analysis of
the lobule geometries (Section 3.3.1), and the zonated expression patterns (Section 3.4.1)
that I developed in the context of this thesis, including the figures, were published as part
of a research paper [1]. Figures that have been published as part of this publication are
marked with a note in the figure caption.



Summary

The mammalian liver is organized into three-dimensional structures called lobules that are
integral to its function. According to the widely accepted hexagonal model, the cross-section
of each lobule is characterized by a central vein and portal triads at the corners. These
portal triads consist of a hepatic portal vein, a hepatic arteriole, and a bile duct. Blood
is delivered through the hepatic artery and portal vein and flows inward from the outer
periportal region toward the central vein through sinusoids lined with hepatocytes. These
hepatocytes express a wide variety of metabolic enzymes, including cytochrome P450 (CYP)
isoforms that are critical for xenobiotic metabolism. Notably, many hepatic enzymes,
including CYPs, exhibit differential expression along the periportal-to-perivenous axis, a
spatial variation known as liver zonation.

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases
characterized by the accumulation of fat in the liver (steatosis) in the absence of significant
alcohol consumption. Histopathologically, NAFLD is characterized by the presence of
microvesicular fat droplets within hepatocytes.

Although liver zonation has been extensively studied, the protein gradients of CYPs
and their alterations in response to steatosis have not been systematically quantified or
compared across species. This study aimed to develop an image analysis workflow to
accurately derive these lobular expression gradients and quantify macrosteatosis in whole
slide images (WSI) of liver histology.

A comprehensive analysis was performed on whole slide images (WSIs) of mouse, rat,
pig, and human liver specimens. These images included hematoxylin and eosin (H&E)
stained slides and immunohistochemically stained slides for glutamine synthetase (GS) and
cytochrome P450 isoforms 1A2, 2E1, 2D6, and 3A4. To achieve the study objectives, two
image analysis workflows were developed: one using classical methods and the other using
convolutional neural networks (CNN). These workflows were designed to perform two key
tasks: (1) segmentation of liver lobules and (2) detection of macrosteatosis droplets.

Key findings were that there was significant variability in lobular geometry within
subjects, with strong consistency across species, with inter-species differences observed
primarily in lobular size. A slight increase in lobular size was observed in steatotic samples,
with a moderate to strong correlation between lobular size and steatosis content. In addition,
interspecies differences in zonation patterns were observed for CYP1A2 in pigs, CYP2E1 in
rats, and CYP3A4 in humans. Importantly, zonation patterns in steatotic subjects were
not qualitatively different from those in non-steatotic subjects across species.

In summary, I have successfully developed and implemented an image analysis workflow
for whole slide images (WSIs) that allows detailed examination of liver lobule geometry
and macrosteatosis droplets. Furthermore, the resulting datasets were integrated to facil-
itate a comprehensive analysis of the zonal distribution of CYP protein expression and
macrosteatosis within the lobules.
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Graphical abstract of the image analysis workflow presented in this thesis: The
workflow begins with a set of whole slide images (WSIs), including a hematoxylin and eosin
(H&E) stained WSI and immunohistochemically stained WSIs for glutamine synthetase (GS)
and cytochrome P450 isoforms 1A2, 2E1, 2D6, and 3A4. During preprocessing, these images
were aligned, and the hematoxylin and eosin/DAB staining components were separated to
produce grayscale images representing each staining component. The DAB components
from the GS and CYP images were then processed through a lobule detection pipeline to
identify lobule and vessel boundaries. Meanwhile, the registered H&E slide was processed
through a steatosis detection pipeline to identify macrosteatosis droplets. The resulting
datasets from both pipelines were then analyzed to assess (1) the geometric properties of
lobule boundaries and macrosteatosis droplets, and (2) the zonal distribution of protein
expression and macrosteatosis.



Zusammenfassung

Die Leber von Säugetieren ist in dreidimensionale Strukturen, sogenannte Lobuli, organisiert,
die für ihre Funktion von entscheidender Bedeutung sind. Gemäß dem weit verbreiteten
hexagonalen Modell ist der Querschnitt jedes Lobulus durch eine zentrale Vene und einem
Verbund aus einer Pfortader, einer Leberarteriole und einem Gallengang and den Ecken
gekennzeichnet. Das Blut aus der periportalen Region durch Sinusoide, die mit Hepatozyten
ausgekleidet sind, in Richtung der zentralen Vene. Diese Hepatozyten exprimieren eine
Vielzahl von Stoffwechselenzymen, darunter Cytochrom P450 (CYP)-Isoformen, die für den
Abbau von Xenobiotika entscheidend sind. Bemerkenswerterweise zeigen viele Leberenzyme,
einschließlich der CYPs, eine inhomogene Expression entlang der periportal-perivenösen
Achse, eine räumliche Variation, die als Leberzonierung bekannt ist.

Nicht-alkoholische Fettlebererkrankung (NAFLD) ist eine der häufigsten Lebererkran-
kungen, die durch die Ansammlung von Fett in der Leber (Steatose) in Abwesenheit eines
signifikanten Alkoholkonsums gekennzeichnet ist. Histopathologisch ist NAFLD durch das
Vorhandensein von mikrovesikulären Fetttropfen innerhalb der Hepatozyten charakterisiert.

Trotz intensiver Forschung zur Leberzonierung wurden die Protein-Gradienten der CYPs
und ihre Veränderungen bei Steatose bisher nicht systematisch quantifiziert oder zwischen
Spezies verglichen. Diese Studie entwickelte einen Bildanalyse-Workflow, um diese lobulären
Expressionsgradienten präzise zu erfassen und Makrosteatose in Ganzschnittbildern (WSI)
der Leberhistologie zu quantifizieren.

Eine umfassende Analyse wurde an Whole-Slide-Images (WSI) von Lebergewebe-
proben von Maus, Ratte, Schwein und Mensch durchgeführt. Diese Bilder umfassten
Hämatoxylin- und Eosin-(H&E)-gefärbte Schnitte sowie immunhistochemisch gefärbte
Schnitte für Glutaminsynthetase (GS) und Cytochrom P450-Isoformen 1A2, 2E1, 2D6
und 3A4. Um die Studienziele zu erreichen, wurden zwei Bildanalyse-Workflows entwi-
ckelt: einer unter Verwendung klassischer Methoden und der andere unter Verwendung
von Convolutional Neural Networks (CNN). Diese Workflows wurden entwickelt, um zwei
Hauptaufgaben zu erfüllen: (1) Segmentierung von Leberlobuli und (2) Erkennung von
Makrosteatose-Tropfen.

Die Ergebnisse zeigten signifikante Variabilitäten in der Lobulusgeometrie zwischen den
Probanden, konsistente Muster zwischen den Spezies und eine Zunahme der Lobulusgröße
bei steatotischen Proben. Interspezifische Unterschiede in den Zonierungsmustern wurden
für CYP1A2 bei Schweinen, CYP2E1 bei Ratten und CYP3A4 beim Menschen festgestellt.
Interessanterweise unterschieden sich die Zonierungsmuster bei steatotischen Proben nicht
qualitativ von denen bei nicht-steatotischen.

Zusammenfassend habe ich erfolgreich einen Bildanalyse-Workflow für Whole-Slide-
Images (WSI) entwickelt und implementiert, der eine detaillierte Untersuchung der Geome-
trie der Leberlobuli und von Makrosteatose-Tropfen ermöglicht. Darüber hinaus wurden die
resultierenden Datensätze integriert, um eine umfassende Analyse der zonalen Verteilung
der CYP-Proteinausdrücke und der Makrosteatose innerhalb der Lobuli zu ermöglichen.
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1 Introduction

1.1 The Liver

The liver is a vital organ that serves as a central hub for a wide range of essential
physiological processes. It plays a critical role in macronutrient metabolism, blood volume
regulation, immune system support, endocrine control of growth signaling pathways, lipid
and cholesterol homeostasis, and detoxification of xenobiotic compounds, including many
pharmaceutical drugs. Among its key functions, the liver’s ability to process, distribute,
and metabolize macronutrients is fundamental because it provides the energy necessary to
sustain these physiological activities [11].

One of the primary functions of the liver is to regulate glucose levels. It stores glucose
as glycogen during periods of feeding and produces glucose through gluconeogenesis in
response to fasting [43, 33]. In addition, the liver is central to lipid metabolism, not only
oxidizing lipids for energy but also packaging excess lipids for secretion and storage in other
tissues, such as adipose tissue [3, 40].

The liver also plays a critical role in protein and amino acid metabolism. It is responsible
for synthesizing a significant portion of the proteins found in the blood, both in terms of
total mass and protein diversity. In addition, the liver processes amino acids for energy
production and manages the disposal of nitrogenous waste from protein degradation through
the urea cycle [60].

1.2 Hepatic Zonation

The liver is a highly structured organ composed of three-dimensional anatomical units
called liver lobules. These lobules are traditionally described by a hexagonal model (Figure
1.1). In this model, each lobule features a central vein at its core, with branches of the
hepatic artery, portal vein, and bile duct situated at the corners, forming what is known as
the portal triad. Oxygen-rich blood enters the liver lobule through the portal tracts and
flows inward toward the central vein, while bile produced by hepatocytes flows outward
toward the bile ducts in the portal triads [18]. Hepatocytes, the primary functional cells
of the liver, are arranged in layers along the portal-venous axis, absorbing oxygen and
nutrients as blood passes through. This directional blood flow creates a gradient of oxygen,
nutrients, and signaling molecules, resulting in a zonated microenvironment that drives the
heterogeneous expression of various enzymes and metabolic pathways within the lobule.
As a result, metabolic functions are not uniformly distributed: energetically demanding
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processes such as protein synthesis, urea production, and gluconeogenesis predominantly
occur in the oxygen-rich periportal zones, while processes like xenobiotic metabolism, bile
acid biosynthesis, and glycolysis, which are less dependent on high oxygen levels, are
concentrated in the pericentral zones [49]. This spatial partitioning of metabolic functions
within the liver is known as liver zonation, and it is essential for the organ’s ability to
efficiently manage its diverse roles [41, 10].

Figure 1.1: The hexagonal model of a liver lobule. Created with Biorender.com.

Liver zonation provides insight into the localized drug-induced damage observed in
liver pathology. For example, acetaminophen is the leading cause of drug-induced acute
liver failure in the US, UK, South America, Australia, and Sweden [20]. This damage is
primarily due to the accumulation of reactive metabolites produced by the metabolizing
enzymes CYP2E1 and CYP1A2, which are predominantly expressed in the pericentral
zones resulting in pericentral necrosis [36].

The cytochrome P450 (CYP) superfamily is expressed primarily in the liver and is
responsible for catalyzing over 90% of all reported enzymatic reactions [58]. The CYP
isoforms 3A4 (20%), 1A2 (10%), 2D6 (10%), and 2E1 (5%) collectively contribute to about
45% of these reactions. In humans, approximately 80% of oxidative metabolism and 50% of
overall drug elimination can be attributed to CYP enzymes [76].

It has long been established that most members of the CYP superfamily are preferentially
expressed in the periportal zone of liver lobules in rats [31, 9, 13]. Notably, Bühler et al.
[13] analyzed the expression of CYP isoforms 2A1, 2B, 2E1, and 3A in immunochemically
stained adjacent liver sections and found nearly identical expression patterns for these
proteins. However, this research was conducted exclusively in rats [54], and little is known
about the quantitative expression patterns within liver lobules or their potential differences
between species.

Example sections of immunostained WSI for GS and the CYPs 1A2, 2D6, 2E1, 3A4 are
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shown in Figure 1.2 for normal mouse, rat, pig, and human samples.

Figure 1.2: Overview of HE and zonated expression of GS and CYP in liver
tissue in normal mice, rats, pigs, and humans. The different stainings are depicted in
rows, with columns corresponding to the different species. Adapted from Albadry et al. [1].

A thorough analysis of CYP expression patterns requires a method to automatically detect
liver lobules in histological whole slide images (WSI) in order to establish the spatial portal-
venous reference system across which protein expression can be analyzed. Identifying liver
lobules in WSI is a challenging task and existing methods require manually annotated image
data. Peleman et al. [56] employed a semi-automated approach by manually annotating
central veins on tissue slides and then using Voronoi tessellation to segment the lobules.
Similarly, Lau et al. [46] used a fully automated approach in which slides were stained
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for glutamine synthetase (GS), a protein expressed exclusively in the hepatocyte layers
adjacent to the central veins. Markers were created from the GS signal to calculate the
Voronoi diagram. However, the borders obtained from tessellation ignore the location of
the periportal vessels. This problem was circumvented by manual adjustments. Another
approach involved manual annotation of the periportal vessels to assign each pixel a
"portality" value ranging between 0 and 1, calculated based on the distance of the pixel
to the nearest central and portal locations. Lobule boundaries were then derived using a
watershed algorithm with central veins locations serving as markers [66].

However, these methods rely heavily on manual annotation to produce accurate results.
For a comprehensive and scalable analysis, this reliance on manual input is not feasible due
to the significant time and expertise required to effectively annotate large datasets.

1.3 Hepatic Steatosis

Hepatic steatosis, also known as fatty liver disease, is characterized by the accumulation
of fat, predominantly triglycerides, within hepatocytes [6]. It represents the mildest form
on the spectrum of liver disease, which can range from simple fatty liver to more severe
conditions such as steatohepatitis and can eventually progress to fibrosis, cirrhosis, and
hepatocellular carcinoma [57]. There are two major forms of steatosis: alcoholic and
non-alcoholic fatty liver disease (NAFLD). NAFLD has a global prevalence of 25% and is
primarily observed in patients with central obesity, Type 2 diabetes mellitus, dyslipidemia,
and metabolic syndrome [57]. The histological damage in NAFLD closely resembles that
seen in alcoholic liver disease; however, by definition, NAFLD is not induced by alcohol
[6]. Experts have reached a consensus that the term NAFLD no longer adequately reflects
current scientific understanding, and they have proposed the use of metabolic (dysfunction)-
associated fatty liver disease (MAFLD) as a more accurate and encompassing term [23,
28].

Several non-invasive imaging techniques are available for the diagnosis of liver steatosis,
including ultrasound [24], vibration-controlled transient elastography (VCTE) [70], CT,
MRI, and magnetic resonance spectroscopy (MRS) [69]. Despite these advances, liver
biopsy remains the gold standard for the diagnosis of hepatic steatosis and is particularly
important for assessing its severity [57]. Accurate quantification of hepatic steatosis is
also critical in assessing the suitability of donor livers for transplantation, as donors with
macrovesicular steatosis in more than 25% of hepatocytes have a higher risk of early graft
dysfunction in liver transplant recipients [4].

However, the absence of standardized grading criteria for steatosis has led to highly
variable scores and inconsistent assessments of liver transplant suitability among pathologists
[53]. To address this issue, Neil et al. [53] proposed a set of standards to guide the assessment
of hepatic steatosis in liver histology images. They categorized fat in histological slides
into three distinct types: Large droplet fat (LDF): Characterized by a single large
fat droplet within the cell that causes significant cellular expansion, making the affected
hepatocyte larger than adjacent non-steatotic or minimally steatotic hepatocytes. If the
nucleus is visible in the section, it is typically displaced to the cell’s periphery (Figure
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1.3C). Smaller droplet fat (SDF): Comprising all fat droplets that do not qualify as
LDF or ’true’ microvesicular steatosis (Figure 1.3B). "True" microvesicular steatosis:
Tiny droplets within hepatocytes, which expand and fill the cells, resulting in a foamy
appearance (Figure 1.3A, B).

Figure 1.3: Histologic images of the steatosis types (A) True microvesicular steatosis
and Smaller Droplet Fat (SDF). (B) Large Droplet Fat (LDF) in the left and microvascular
steatosis in the right portion of the image. (C) Mainly LDF. All examples are 225 µm×
225 µm sections from a 40x WSI of rat liver samples.

Automated detection of steatosis in whole slide images (WSI) is a significant challenge in
histological image analysis. Various analytical techniques have been employed to address this
problem, ranging from classical rule-based methods to fully deep learning-based approaches.
Classical image analysis techniques often exploit the characteristic appearance of steatosis
blobs, which present as white, circular objects on Hematoxylin and Eosin (H&E) stained
WSIs [12]. In these methods, the initial step involves extracting potential objects by
thresholding the input image. The extracted objects are then classified based on their
geometric properties, such as size and shape [37, 62, 52].

Roy et al. [62] used an unsupervised approach to distinguish between steatosis droplets
and clumped droplets. Potential objects were filtered based on size and solidity, a measure
of how much an object deviates from its convex hull. For clumped objects, points of high
curvature along the boundary were identified, and adjacent points were connected to split
the object into two. This separation was validated by fitting ellipses to both the separated
objects and the original object. In contrast, Homeyer et al. [37] used a supervised approach,
where shape features of the candidate objects were used to train a random forest classifier
to distinguish between steatosis and non-steatosis objects. Munsterman et al. [52] used
a logistic regression model for classification. After filtering objects by size, the regression
model classified blobs as steatosis or non-steatosis based on geometric parameters.

In recent years, neural networks have become increasingly popular for the quantification
of steatosis. Salvi et al. [64] used a hybrid approach that combined a UNET architecture with
a pre-trained ResNet34 backbone, along with several classical image processing techniques.
They first applied Gabor filters to the input images, followed by thresholding to identify
potential steatosis objects. The semantic segmentation results from the UNET were then
used to eliminate false positives generated during the initial thresholding. In addition,
an active deformable model was employed to separate fused droplets. Roy et al. [63]
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implemented a methodology that integrated three different neural network types: a UNET
structure to identify steatosis regions, a Holistically Nested Neural Network (HNN) to
analyze the characteristics of steatosis boundaries, and a Fully Convolutional Network
(FCN) to generate the final prediction map.

Steatosis has been shown to significantly influence transcription and protein expression
in the liver, including drug-detoxifying enzymes such as CYPs [16]. Research indicates
that CYP3A activity is elevated in humans, rats, and mice in steatosis [16]. Similarly,
CYP2D6 levels and activity tend to increase in human liver tissue affected by nonalcoholic
steatohepatitis (NASH). In contrast, CYP1A mRNA and protein expression are reduced
in rodent models of nonalcoholic fatty liver disease (NAFLD) and corresponding human
tissues. Conversely, CYP2E1 levels and activity are consistently elevated in both humans
and rodents. These findings were further corroborated by Albadry et al. [2], who reported
decreased enzymatic activity for CYP1A and CYP3A, alongside increased activity for
CYP2E1, in steatotic mice. Example sections of the extent of steatosis and protein
expression for the investigated species and proteins are presented in Figure 1.4.
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Figure 1.4: Overview of H&E, extent of zonated expression and steatosis in
liver tissue in mice (control, 2W HFD, 4W HFD), rats (control, 2W HFD, 4W
HFD), and humans. The different stainings are depicted in rows and the species are
in the columns. Species are color-coded as follows: blue for mice, orange for rats, and
green for humans. Scale bars are 250 µm. Adapted with permission of Mohamed Albadry
(unpublished results).
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1.4 Questions, Scope, and Hypotheses

It is well established that CYPs are expressed in the liver lobule in a zonated pattern, with
most CYPs depicting high expression in the pericentral zone and lower expression in the
periportal zone. While the geometry of liver lobules has been the subject of some studies,
systematic quantification and comparison of lobular geometry and CYP zonation patterns
across species have not yet been conducted. Also, the effect of steatosis on the zonation
patterns and geometries has not been compared between species so far.

This thesis aims to develop and implement an image analysis workflow for whole slide
images (WSIs) that allows detailed examination of liver lobule geometry and macrosteatosis
droplets to address the following questions:

• Are there differences in lobular geometry between species?

• Are there inter-species differences in zonated expression patterns of the cytochrome
P450 isoforms?

• Does steatosis affect lobular geometry and zonated expression patterns?
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2 Materials and Methods

2.1 Human and Animal Samples

2.1.1 Rodent Samples

Formalin-fixed and paraffin-embedded liver samples were collected from normal and steatotic
mice, rats, pigs, and humans, with six samples per group. For mice, liver samples were taken
from the left lateral lobe (LLL), median lobe (ML), right lobe (RL), and caudate lobe (CL).
For rats, only the median lobe (ML) was sampled. Pig liver samples were collected from
the LLL. Human liver samples were obtained during clinically indicated hepatic surgeries
performed in 2019 at the University Hospital of Jena, Germany.

For the rodent studies, male C57BL6/J mice (ex-breeders) from Janvier, France, weighing
28–30 g and aged 8–9 months (n=6/group), and male Lewis rats from Charles River, France,
weighing 300–400 g and aged 3 months (n=6/group) were used. The rodents were housed
in groups of three with ad libitum access to food and water, under controlled environmental
conditions: a 12-hour light/dark cycle, a temperature of 21 ± 2°C, and 45%–65% relative
humidity. Animals were humanely euthanized using an overdose of isoflurane followed by
exsanguination.

To induce steatosis in rodents, a high-fat diet with low methionine and choline content
(HF-diet) (E15652-94 EF R/M, high-fat MCD mod, Ssniff Spezialdiäten GmbH, Sulzfeld,
Germany) was administered for two (2W HFD) or four weeks (4W HFD), leading to
varying degrees of steatosis. Control groups were maintained on a standard diet from
Altromin Spezialfutter GmbH, Germany. Body weight and food intake were monitored
daily throughout the study.

2.1.2 Pig Samples

Liver tissue from pigs was collected from three male and three female clinically healthy
Prestice Black-Pied pigs, weighing 25–33 kg and aged 3 months. These pigs were housed
under similar controlled conditions with a 12-hour light/dark cycle, a temperature of
21± 2◦C, and 60% relative humidity. Anesthesia was induced with ketamine (10 mg/kg),
azaperone (5 mg/kg), and atropine (1 mg), and maintained with intravenous propofol (5–10
mg/kg). Pigs were euthanized with an intravenous injection of T61 solution under general
anesthesia.
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2.1.3 Human Samples

Human liver samples were obtained from 12 individuals, including normal (n=6, aged
45–59 years, 2 males, 4 females) and steatotic tissue (n=6, aged 45–69 years, 5 males, 1
female, steatosis grade 30-70%) samples. Given that most patients undergoing liver surgery
present with additional conditions such as steatosis, fibrosis, or hepatic inflammation,
careful selection of samples was necessary. Samples were independently assessed by four
scientists, including a board-certified pathologist, to ensure accurate categorization. The
absence of abnormalities, including steatosis and fibrosis, was confirmed by a board-certified
hepato-pathologist. Steatosis was considered absent if less than 5% of hepatocytes contained
lipid droplets, following established guidelines [42, 22]. Fibrosis was deemed absent when
liver tissue samples scored 0 for necrosis, inflammation, and fibrosis according to the Ishak
score (modified Knodell score) [39] based on Hematoxylin and Eosin (HE) and Elastin Van
Gieson (EvG) stained sections.

2.2 Ethics Statement

All animal experiments and housing were conducted in compliance with current with the
German Law on the Protection of Animals/European Communities Council Directive
(Directive 2010/63/EU), animal welfare guidelines, and the ARRIVE Guidelines for Re-
porting Animal Research. The mouse study was approved by the Thüringer Landesamt für
Verbraucherschutz, Thuringia (Approval Number: UKJ-19-020) (see also Albadry et al. [2,
1]), and the rat study was approved under Reg.-Nr. 02-043/10 and Reg.-Nr.02-018/14.

The pig study received approval from the Commission for Work with Experimental
Animals under the Czech Republic’s Ministry of Agriculture, project ID: MSMT-15629/2020-
4.

The human study was approved by the institutional review board of the University
Hospital of Jena, Germany (ethical vote: UKJ_2018-1246-Material). This approval confirms
that the study adhered to the ethical standards outlined in the 1964 Declaration of Helsinki
and its subsequent amendments or comparable ethical standards.

2.3 Histology

Histological experiments were conducted as described in Albadry et al. [2, 1]: Paraffin-
embedded liver tissue samples were processed for H&E staining by first cutting 3 µm
sections to evaluate lobular architecture. The staining process began with deparaffinization
and rehydration through descending grades of alcohol. The sections were then immersed
in hematoxylin and eosin solutions, followed by dehydration using ascending grades of
alcohol and subsequent clearing with xylene. Additionally, paraffin-embedded human liver
tissue samples were subjected to EvG staining to confirm the absence of fibrous connective
tissue. After cutting 3 µm sections, the tissue sections were deparaffinized and hydrated
in distilled water. The sections were immersed in Verhoeff’s solution for 1 hour until the
tissue appeared completely black. Following this, the sections were rinsed in tap water
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and differentiated with 2% ferric chloride for 1–2 minutes. The slides were then washed
with tap water, treated with 5% sodium thiosulfate for 1 minute, and counterstained with
Van Gieson’s solution for 3–5 minutes. The sections were subsequently dehydrated using
ascending grades of alcohol and cleared with xylene.

Immunohistochemistry was employed to assess and quantify the spatial distribution
of glutamine synthetase (GS) and four different cytochrome P450 (CYP) enzymes, as
previously outlined Albadry et al. [2]. The staining was conducted on consecutive 3 µm
thick sections of formalin-fixed, paraffin-embedded liver tissue. Five different antibodies
were used to detect GS, CYP1A2, CYP2D6, CYP2E1, and CYP3A4. After deparaffinization
and rehydration using descending grades of ethanol, heat-induced epitope retrieval was
performed using a trisodium citrate buffer at pH 6.1, with steaming at 100 ◦C for 30
minutes. The samples were then allowed to cool to room temperature for 20 minutes.
Endogenous peroxidase activity was inhibited using a 3% hydrogen peroxide solution.
To block non-specific binding, a commercially available protein block (ab64226, Abcam,
Germany) was applied. The sections were incubated overnight at 4 ◦C with the appropriate
CYP antibody. For the rabbit polyclonal primary antibodies (CYP2D6, 2E1, and 3A4),
the rabbit-specific HRP/DAB IHC detection system (ab236469, Abcam) was used for
40 minutes at room temperature. For mouse monoclonal primary antibodies (GS and
CYP1A2), additional primary antibody biotinylation was conducted using the Dako Animal
Research Kit Peroxidase (K3954, Dako, Denmark). Endogenous avidin and biotin activity
was blocked using the avidin/biotin blocking kit (ab64212, Abcam), followed by application
of the avidin-HRP complex. To visualize the reaction, DAB chromogen (GV825, Dako,
Denmark) was applied for approximately 3 minutes. Counterstaining was carried out with
Dako hematoxylin (CS700, Dako, Denmark) for 6–8 minutes. For each staining procedure,
a single slide was used as a negative reagent control, where the primary antibody was
omitted. A consistent protocol was used for staining the liver tissue samples across the
four species. The stained slides were mounted and digitized using a whole slide scanner
(L11600, Hamamatsu, Japan) equipped with NDP.view2 Plus Image viewing software
(version U12388-02) at ×40 magnification.

2.4 Whole slide image (WSI) preprocessing

2.4.1 WSI Registration

To aggregate protein expression data across slides, aligning adjacent regions of interest
(ROIs) was necessary. I utilized the VALIS Python library [25] for this purpose. VALIS
identifies image features and performs both rigid and non-rigid registrations to effectively
align slides. Initially, rigid registration aligns slides based on overall features, while non-rigid
registration refines the alignment using micro features at higher resolution levels.

VALIS requires each image set to contain a single ROI for reliable alignment. Therefore,
I extracted ROIs from the target images. When multiple ROIs were present in the source
image, I used QPath [8] to annotate these ROIs. In the lowest resolution of the source image,
I applied a static threshold to segment the tissue and employed OpenCV contour detection
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to outline the tissue contours. Each ROI annotation from QPath was then matched against
these contours. When a match was found, I extracted the corresponding subsection of the
source image defined by the contour’s bounding box and saved it as a separate ome.tiff file.
This process produced one or more ROI subdirectories per subject, each containing the
ROI for every stain.

For each subject and ROI, slides were processed using VALIS, which organized the
aligned slides into a consistent directory structure. This ensured that each subject and
ROI had a set of aligned slides for downstream analysis. A graphical example is shown in
Figure 3.2A.

2.4.2 Stain Separation

For segmentation based on protein expression and quantitative analysis of zonated expression,
crucial information is extracted from the DAB signal in whole slide image (WSI) scans. A
Python implementation [65] of the stain separation technique proposed by Macenko et al.
[47] to separate the Hematoxylin and DAB staining components was used. The method
begins by transforming RGB tuples into optical density (OD) space. Instead of using
singular value decomposition, this implementation applies the eigendecomposition of the
covariance matrix. The two eigenvectors corresponding to the largest eigenvalues define a
plane onto which OD-transformed pixels are projected.

To identify the extreme vectors, angles are computed for each projected vector, and the
minimum and maximum angles are determined. To enhance robustness against outliers,
the 0.01 and 0.99 percentiles are used to represent the minimum and maximum angles,
respectively. Stain vectors are then derived by calculating the dot product between these
eigenvectors and the vectors corresponding to the extreme angles.

Stain concentrations are calculated by solving the equation A · c = P , where A is the
stain matrix composed of stain vectors, P represents the OD-transformed pixels, and c

denotes the concentration vector. Given the large size of megapixel images, which cannot
be loaded into memory all at once, a tile-based approach is employed for this algorithm.
As suggested by Anghel et al. [5], the algorithm operates exclusively on foreground pixels.
The implemented procedure consists of three key steps: (1) Identifying foreground pixels;
(2) Calculating stain vectors; (3) Decomposing each image tile and writing the results to a
target array.

In the first step, foreground pixels are identified by randomly sampling pixels from each
tile and using Otsu’s method [55], implemented in OpenCV [17], to determine a threshold.
In the second step, stain vectors are computed from the selected foreground pixels based on
the threshold. Finally, the tiles are decomposed using these stain vectors, and the resulting
grayscale images for each stain are stored in a target ZARR array with JPEG compression.
To manage computational demands efficiently, only 0.1 percent of the pixels are used for
calculating the threshold and the stain vectors.

One significant drawback of this approach is the need to load each tile into memory
three times. To reduce the time spent on decompression, the uncompressed tile is written
to a temporary file on disk after the first read during threshold computation. This allows
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subsequent accesses to bypass decompression, thereby streamlining the computation of
stain vectors and tile decomposition.

An example result of the stain separation algorithm is shown in Figure 3.2B.

2.5 Detection of Macrosteatosis

A hybrid approach combining classical image analysis methods with neural network technol-
ogy was developed to detect macrosteatosis droplets. The first part of the detection pipeline
utilized a U-Net model to segment the input image into steatosis and non-steatosis regions.
The regions identified as steatosis were then further processed using a blob disentanglement
algorithm.

2.5.1 U-Net Model Framework

A Python library published by Iakubovskii [38], based on the TensorFlow framework [50],
which provides a U-Net model [61] with pre-trained backbones, was used. Specifically, a
U-Net model with a VGG16 encoder, trained on the ImageNet dataset [19], was employed
in this work.

2.5.2 Training Dataset

QPath was utilized to select points in the WSI from which 1024x1024 pixel tiles were
extracted from resolution-level zero (40x magnification). Macrosteatosis annotations were
created for these images as described in the section 2.5.3. In total, 136 tiles were selected.
Detailed information about the selection is documented in Table 2.1.

Table 2.1: Selection of Training Image Tiles from the WSI Dataset

2W HDF 4HDF Steatosis Control
Mouse 26 24 4

Rat 24 24 4
Human 24 6

The training data was split into training, test, and validation data in an 80/10/10 ratio.

2.5.3 Preparation of the Training Data

To train a segmentation model, it was necessary to prepare training images along with
corresponding masks that designate the class of each pixel. Manual annotation of these
images is typically a labor-intensive and time-consuming task. To reduce the annotator’s
workload, I implemented a strategy that generated preliminary proposals for potential
steatotic blobs, allowing annotators to refine these proposals instead of annotating each
image from scratch. Additionally, I simplified the annotation process by using keypoint
annotations rather than polygon annotations, requiring annotators to mark just a single
point within each steatotic blob.
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Since steatotic droplets appear as distinct white drops on slides, potential objects were
identified through image thresholding. This process generated a set of background objects,
including single steatotic droplets, clumped droplets, vessels, microsteatotic areas, and
other artifacts. These objects were then extracted using contour detection and filtered
based on their size. To differentiate steatotic objects from other structures, a clustering
approach was used based on the assumption that different classes exhibit inherent geometric
differences. Geometric features were computed for each contour, and principal component
analysis (PCA) was used to identify distinguishing features. After dimensionality reduction,
the objects were clustered into two classes, with labels assigned through visual assessment.
Steatotic objects were then annotated with polygons and keypoints and uploaded as
proposals for further annotation.

Once the annotators had refined these proposals, the optimized annotations were
downloaded. The training images were then processed using watershed segmentation,
utilizing the keypoints as markers and the background mask as the true background. This
approach resulted in an array where each steatotic object was uniquely labeled with a
distinct identifier. For training the U-Net model, only a binary mask was required, so the
labeled array was converted into a binary mask by setting all steatotic pixels to true and
the background pixels to false.

2.5.4 Training of the U-Net Model

The U-Net model with a pre-trained VGG16 encoder was first trained on the macrosteatosis
training dataset published by [63] for 25 epochs with a batch size of 4. This dataset was
designed for detecting macrosteatosis that fitted the definition of large droplet fat (LDF) by
Neil et al. [53]. Therefore, the obtained model weights were still insufficient to detect small
droplet fat (SDF). The pretrained model was then trained on 136 training images, with a
batch size of 4, over 50 epochs. The images used for training were 256x256 pixel tiles (10x
magnification). Consequently, the training image tiles and masks were downscaled by a
factor of 4. To enhance robustness, on-the-fly augmentation techniques such as random
flipping, scaling, and rotation were applied during training.

I used the binary focal dice loss for binary segmentation as recommended by the author
of the segmentation-model framework [38], which is defined as the sum of dice loss LDL

and binary focal loss LBF

L(G,P) = LBF + LDL (2.1)

The matrices G ∈ {0, 1}m×n and P ∈ (0, 1)m×n represent the ground truth mask and the
prediction array, respectively. The binary focal loss is defined as

LBF(G,P) =
1

m · n

m∑
k=1

n∑
l=1

−gk,l ·α(1− pk,l)
γ log(pk,l)− (1− gk,l)α · pγk,l log(1− pk,l) (2.2)

with the default parameter values α = 0.25 and γ = 2.0. The dice loss is defined as

LDL(TP, FP, FN) =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(2.3)
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with the default parameter value β = 1.0. The arguments TP , FP , and FN denote true
positive, false positive, and true negative pixels, respectively. The true positive value TP is
defined as

TP =
m∑
k=1

n∑
l=1

gk,l · pk,l and (2.4)

and the false positive and false negative values FP and FN are defined as

FP =

(
m∑
k=1

n∑
l=1

pk,l

)
− TP and FN =

(
m∑
k=1

n∑
l=1

gk,l

)
− TP. (2.5)

2.5.5 Semantic Segmentation on WSI

The U-Net model, being a fully convolutional network, is capable of handling variable input
image sizes. While training requires significant computational resources, the prediction
phase is less resource-intensive, allowing for the use of larger image sizes. However, due to
the substantial size of whole slide images (WSI), processing them in a single pass is not
feasible, making it necessary to divide the WSIs into smaller tiles. To ensure comprehensive
coverage and accurate predictions, I extracted overlapping tiles from the WSI and fed them
into the network. Predictions for the non-overlapping regions of each tile were then written
to a target ZARR array.

The use of overlapping tiles is critical for mitigating prediction performance issues
at the edges of the images, where boundary effects can lead to incomplete or inaccurate
predictions. The final output is a binary array in which all pixels corresponding to steatosis
are marked as true, while all other pixels are marked as false. Since the detected steatotic
objects can be either individual droplets or clusters of fused droplets, further separation is
necessary for subsequent analysis and accurate quantification.

2.5.6 Postprocessing and Clump Separation

To perform instance segmentation, the binary macrosteatosis mask was processed to identify
and separate contours for each droplet instance. Initially, clumped droplets were filtered
based on size and solidity thresholds. Contours with a surface area corresponding to 700
pixels (36µm2) were discarded. Objects with a solidity greater than 0.95 were classified as
singular droplets and added to the final result, while objects with a solidity smaller than
0.6 were discarded. The remaining contours were considered clumped droplets.

Solidity (SS) is defined as the ratio of the area of the object AO to the area of its
convex hull AH, expressed as S = AO/AH. To further analyze clumped droplets, I utilized
convexity defects, similar to the method outlined by [62]. Convexity defects represent
indentations or cavities where the contour deviates from the convex hull. OpenCV functions
were used to identify these defects, measuring the distance from the convex hull’s farthest
points to each defect.

To process the contour, I first evaluated the defects. Contours with fewer than two
defects were discarded. The remaining defects were sorted by depth, and the deepest defect
was identified. I then calculated the distance to the nearest second defect, selected it, and
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split the contour by connecting these inflection points. The splitting was validated by
fitting ellipses to the original and the two post-split objects. When the Intersection over
Union of the ellipses and the respective objects improved for the split objects, the split was
accepted otherwise the original object was kept. This process was repeated for the split
objects until only individual droplet instances remained.

This method was adapted for use on image tiles, where contours could be inadvertently
split at the tile edges, requiring post-processing to merge them. To address this, I loaded
the ZARR array from semantic segmentation in tiles. For each tile, neighboring tiles (right,
lower-right, and lower) were also loaded to identify and merge contours that touched tile
edges or corners to ensure continuity.

Finally, attributes such as centroid coordinates, area, and circumference were computed
for the resulting contours and stored in a structured dataframe for further analysis.

2.5.7 Model Validation

The segmentation task in this work is framed as a binary instance segmentation problem.
The U-Net model semantically segments the image into two classes: background and
macrosteatosis. Instance segmentation is then achieved through a blob separation process
that disentangles clumped objects and assigns a unique instance label to each connected
component of the macrosteatosis class.

Choosing appropriate validation metrics is critical, as they must address the specific
challenges of detection, classification, and segmentation. It is essential to select metrics
that are appropriate for the specific problem being solved. In this work, metrics for both
semantic and instance segmentation are reported, as suggested by [48]. To identify suitable
metrics for the macrosteatosis segmentation task, the online tool presented in their study
was utilized.

As a metric for evaluating the U-Net semantic segmentation, the Dice Similarity
Coefficient (DSC), also known as the F1-Score, is reported. The DSC is the harmonic mean
of precision and recall. The precision is defined as

Precision =
|TP |

|TP |+ |FP |
∈ [0, 1] (2.6)

where |TP | represents the number of true positive pixels, and |FP | represents the number
of false positive pixels. Precision measures the fraction of pixels correctly predicted as
macrosteatosis out of the total pixels classified as macrosteatosis. The recall is given by

Recall =
|TP |

|TP |+ |FN |
∈ [0, 1] (2.7)

where |FN | denotes the number of false negative pixels. Recall measures the fraction of
correctly predicted macrosteatosis pixels out of all the ground truth macrosteatosis pixels.
It is also referred to as the true positive rate. The Dice Similarity Coefficient (DSC) is
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calculated as

DSC =
2 · Precision · Recall
Precision + Recall

=
2|TP |

2|TP |+ |FP |+ |FN |
∈ [0, 1] (2.8)

The DSC provides a single metric that balances both precision and recall, making it a
comprehensive measure of segmentation performance.

For instance segmentation, the Panoptic Quality (PQ) is reported, which combines the
quality of segmentation, recognition, and detection. The PQ metric integrates the average
Intersection over Union (IoU) scores for all true positive instances and the Dice Similarity
Coefficient (DSC) for detection quality [48]. The panoptic quality is defined as

PQ =

∑
(i,j)∈TP IoU(i, j)

|TP |+ 0.5(|FP |+ |FN |)
∈ [0, 1] (2.9)

where IoU(i, j) denotes the IoU score of every matched pair of a prediction instance Pi and
a ground truth instance Gj . |TP |, |FP |, and |FN | represent the number of true positive,
false positive, and false negative instances, respectively.

Additionally, [48] suggested reporting a boundary-based metric to emphasize the correct
prediction of object boundaries. For this purpose, the Normalized Surface Distance (NSD)
was calculated. The NSD is similar to the Dice Similarity Coefficient (DSC) but focuses
solely on the object boundary regions.

The NSD measures how well the boundaries of the predicted and ground truth objects
overlap. Specifically, it calculates the intersection of the boundary pixels of one object with
the extended boundary of the other object, using a tolerance τ . The metric is defined for a
matched pair of a prediction Pi and ground truth instance Gj as

NSD(Pi, Gj)
(τ) =

|SPi ∩ Bτ
Gj
|+ |SGj ∩ Bτ

Pj
|

|SPi |+ |SGj |
∈ [0, 1] (2.10)

where S denotes the set of boundary pixels and Bτ the set of pixels within the boundary
extended by the tolerance τ . The final metric for a test image is calculated by averaging
over all TP matches:

NSD(P,G)(τ) =
1

|TP |
∑

(i,j)∈TP

NSD(Pi, Gj)
(τ) (2.11)

The tolerance parameter τ was set to 3 px on 10x magnified images corresponding to an
extension of the boundary of 1.36 µm.

I calculated matrices CIoU, and CNSD where the element ci,j is the IoU, or NSD of the
ith prediction element Pi, and the jth ground truth Gj , respectively.

The Hungarian matching [45] was employed to match each ground truth instance with
one prediction instance in order to maximize the total IoU. The "linear_sum_assignment"
function from the SciPy library [75] was used to solve this assignment problem. This
algorithm used CIoU as the cost matrix to optimally match the ground truth and the
prediction instances by maximizing the sum of IoU scores across all matches. The output
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was a set of index pairs that represented the optimal matches.
Based on these index pairs, the number of number of false positives and false negatives

were calculated. Let P and G be the set of predicted and ground truth objects and n and
m be the number of predictions, and ground truth objects, respectively:

P = {P1, P2, ..., Pn} and G = {G1, G2, ...Gm}. (2.12)

Further, the set of index pairs (i, j) matched by linear sum assignment is given as

TP ⊆ {1, 2, ..., n} × {1, 2, ...,m} (2.13)

so that the prediction Pi is matched with the ground truth object Gj . The number of false
positives |FP | is given as the number of unmatched prediction indices:

|FP | = n− |IP | where IP = {i|(i, j) ∈ TP for some j} (2.14)

Similarly, the number of false negatives |FN | is given as the number of unmatched ground
truth indices

|FN | = m− |IG| where IG = {j|(i, j) ∈ TP for some i}. (2.15)

It is obvious that in the case that n = 0 and m = 0 (i.e. the prediction and the ground
truth set are empty), the DSC, PQ, and NSD are not defined as |TP | = |FP | = |FN | = 0.
In that case, the respective metric is set to 1, as this is the correct result.

2.6 Statistical Analysis

Data distributions were assessed by eye. When the data was assessed to be log-normally
distributed, it was transformed to log space, statistics calculated in log space and back-
transformed and the results were plotted on a log scale.

For group comparison tests, we used the Kruskal-Wallis tests [44]. When significant
differences between groups were found, we employed a Dunns post-hoc to group-wise test
the central tendency of the samples. For group-wise testing, Bonferroni correction for the
p-value in multiple comparisons was used [21]. A corrected p-value < 0.05 was considered
significant.

2.7 Code Dependencies

QPath [8] was used as a viewer for whole slide images and to annotate ranges of interest.
For image analysis and manipulation, the computer vision library OpenCV [17] for Python
and NumPy [34] was utilized. For reading and writing pyramidal WSIs, the tifffile library
[29], the openslide-python (the Python bindings for OpenSlide) [30], and zarr-python
[51] were used. For training the U-Net model, segmentation-models [38] and TensorFlow
[50] were used. For K-Means clustering in the lobule segmentation workflow and image
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data preparation, as well as for matching prediction and ground truth instances, the
SciPy implementations of KMeans and linear sum assignment [75] were used. For data
augmentation during training, the albumentations library [14] was utilized. Kruskal-Wallis
and Dunn’s post-hoc testing was conducted using the SciPy and scikit-posthoc packages
[75, 73]. For handling and processing result and interim datasets, pandas [71] was used.
For data visualization, the matplotlib library [72] was used.

2.8 Code Availability

The image analysis code is distributed across four projects. The main project containing the
code for the image analysis pipeline and the code generating the datasets and conducting sta-
tistical testing is available from https://github.com/matthiaskoenig/zonation-image-

analysis. The code for the training of the U-Net model and the macro-steatosis prediction
on the WSI is available from https://github.com/matthiaskoenig/steatosis-U-Net.
Image manipulation and analysis routines developed for the preprocessing pipeline, the
lobule segmentation pipeline, or the macrosteatosis segmentation workflow, are available
in https://github.com/matthiaskoenig/image-utils. The code for preprocessing and
creating the dataset for annotation, and creation of the training dataset from the anno-
tations, is available in https://github.com/matthiaskoenig/trainingdata-curation.
The code used to handle the upload and download annotation data from and to the label
studio instance is available in https://github.com/matthiaskoenig/labelstudio.
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3 Results

In this work, an image analysis workflow was developed to determine lobular geometries,
analyze lobular expression gradients, and quantify macrosteatosis in whole slide images
(WSIs) of liver histology (Figure 3.1). The main results include the development of
an image analysis workflow for lobule segmentation (Section 3.1), the quantification of
macrosteatosis droplets (Section 3.2), the determination of lobular geometries (Section 3.3),
and the assessment of hepatic zonation of protein expression and the effects of steatosis
(Section 3.4).
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Figure 3.1: Overview of the developed image analysis workflow.
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Figure 3.1 (cont.): A set of whole-slide images (WSI) was provided, including a Hema-
toxylin and Eosin (H&E) stained WSI and immunohistologically stained WSIs for the
proteins Glutamine Synthetase (GS) and Cytochrome P450 isoforms 1A2, 2E1, 2D6, and
3A4. During preprocessing, these RGB images were first aligned, and then the stain
components of Hematoxylin and Eosin/DAB were separated, resulting in two grayscale
images representing each stain component. The DAB components from the GS and CYP
images were processed through the lobule detection pipeline to identify lobule and vessel
boundaries. The registered H&E slide was passed into the steatosis detection pipeline to
detect macrosteatosis droplet instances. Subsequently, the resulting datasets from both
pipelines were analyzed for (1) geometric properties of the lobule boundaries and macroste-
atosis droplets, and (2) the zonated distribution of protein expression and macrosteatosis.

3.1 Image Analysis Workflow for Lobule Segmentation

This work involved developing an image analysis workflow to detect lobules and quantify the
zonated expression of cytochrome proteins in liver whole slide images (WSI). The following
section details the image processing steps for detecting lobule boundaries.

3.1.1 Lobule Detection Workflow

Previous work on the segmentation of liver lobules has used neural networks and Voronoi
diagrams, which rely heavily on manual annotation of periportal and pericentral vessels in
the given whole slide images (WSIs). Annotation of these slides is a time-consuming task
that requires specialized pathologists to obtain reliable results. Lobules are most distinct
in pig data, where they are delineated by interlobular septa. In contrast, interlobular
septa are absent in humans, rats, and mice. Furthermore, the observed structures deviate
significantly from the idealized symmetric hexagons and show considerable heterogeneity.
This variability can be attributed to both the plane of sectioning and to biological differences.
The variability and lack of physiological boundaries make the recognition of portal triads
and central veins particularly challenging, especially for those without a histopathological
background.

To address these challenges, I developed a method for liver lobule segmentation on WSIs
that exploits the zonated expression patterns of cytochrome P450 (CYP) proteins within
the lobules and does not rely on manual annotation. The established model of liver zonation
describes a three-dimensional substructure called a lobule. The cross-section of a lobule
appears to be polygonal, often described as a hexagon. The periportal vessels and bile ducts
are located at the corners of the hexagon, while the central vessels are located in the center.
Cytochrome P450 expression is heterogeneously distributed along this radial axis. Despite
differences in the expression of specific isoforms, the majority of CYPs are expressed more
abundantly in the pericentral region and less abundantly in the periportal region. Although
the expression pattern of specific CYP enzymes on stained slides can suggest lobular
substructures, the protein signal often stays at background levels in large regions between
two lobule centers, making it difficult to confidently delineate boundaries. Therefore, the
developed method integrates the signals of multiple CYP species to increase robustness in
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the boundary locations. The method requires a set of the DAB stain components of the
HDAB stained slides for different CYP/GS. The DAB component provides information on
the protein expression level and is obtained using the stain separation method described in
the Materials and Methods section (Section 2.4.2). The DAB stain images are the input for
the lobule detection workflow. From the aforementioned model of the lobule, the following
rules for locating lobule boundaries were derived:

• The boundaries should be placed in the periportal region (i.e. region of lowest CYP
expression)

• Boundaries should be closed

• Portal vessels are supposed to be placed on the boundaries

• Central vessels should be located within the boundaries

Based on these rules, the method converts the provided slides into grayscale images, where
dark areas correspond to pericentral zones (high CYP expression), and light areas correspond
to periportal zones (low expression). These grayscale images are then skeletonized and
the lobule boundaries are derived. The specific details of this method are presented in the
following subsection. The processing steps of the lobule detection algorithm are shown in
Figure 3.2C.
The lobule segmentation algorithm consists of nine steps:

1. Load the DAB stain components for the CYPs/GS and stack the images into a
5-channel array, each channel representing a CYP or GS

2. Apply filters for smoothing and adaptive histogram normalization

3. Cluster 5-channel image into superpixels using the SLIC algorithm

4. Classify superpixels as either foreground (tissue) or background (background/vessels)

5. Classify foreground superpixels into periportal, midzone, and pericentral and classify
vessels into periportal, pericentral

6. Create grayscale portality map

7. Run thinning algorithm

8. Extract line segments from the thinned image

9. Polygonize line segments
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Figure 3.2: Overview of the analysis pipeline for quantifying lobular geometry
and zonation patterns
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Figure 3.2 (cont.): The pipeline consists of the following steps: (A) Registration of HE,
GS, and CYP whole slide images (WSI) using VALIS [25]. (B) Stain separation of the
WSI. WSIs are separated into two grayscale images representing the Hematoxylin and the
Eosin or DAB component for H&E or HDAB stained slides, respectively. (C) Lobular
segmentation of WSIs consists of nine steps: (1) Loading a stack of DAB stains for CYPs
and GS. (2) Black and white image inversion and filter application. (3) Image segmentation
using SLIC (Simple Linear Iterative Clustering) superpixel algorithm to generate uniform
size and regular contour superpixels. (4) Classify superpixels into background (black color)
and foreground (white color). (5B) Cluster foreground pixels, intro central (bright) to
portal (dark) clusters. (5A) Find vessel contours and classify vessels as central (cyan) and
portal (magenta). (6) Combine vessel contours and foreground clusters to create a grayscale
map of central (dark) and portal (light) regions. (7) Apply a thinning algorithm to the
grayscale map to create a skeleton. (8) Segment the skeletonized image into line segments.
(9) Polygonize the line segments to create closed polygons. The figure was adapted from
Albadry et al. [1].

In the following these steps are described in detail: (1) To find robust boundaries,
the expression signals of all CYPs were integrated into a stacked image. The registered
DAB stain images for GS, CYP1A2, CYP2D6, GYP2E1, and CYP3A4 were loaded at
resolution level 5 (1.25x magnification) for each region of interest (ROI). At this level, the
expression patterns and vessels remain visible. Images were stacked to create a 5-channel
image. Images, where the number of foreground pixels exceeded 80% of the median number
of foreground pixels across all images, were discarded to exclude images with large tears or
missing tissue.
(2) The images were inverted so that regions of high absorbance (high expression) correspond
to high pixel values. Pixels were set to zero in all images in the stack if the pixel was
zero in at least one of the images. A median filter was then applied and the image was
convoluted to resolution level six (0.625x). Subsequently, adaptive histogram normalization
was applied to reduce global differences in illumination and staining. Finally, the image was
convoluted to resolution level seven (0.3125x) after again applying a median filter. Each
channel was then normalized to the maximum intensity of the channel. This approach
worked well for non-steatotic samples. However, in highly steatotic samples, macrosteatotic
blobs appear as background, causing the median filter to produce lower values that do
not accurately represent protein abundance. Therefore, the median filter was replaced by
a dilation followed by a Gaussian filter. Dilation assigns the maximum value within the
selected kernel to all the pixels in that kernel. This preserves the integrity of the protein
abundance signal.
(3) The resulting 5-channel images were segmented using OpenCV’s SLIC (simple linear
iterative clustering) superpixelization implementation, which assimilates similar pixels into
larger superpixels. Using a superpixelization approach allows the aggregation of similar
pixels in terms of protein expression and spatial location.
(4) These superpixels were then classified as either background or foreground pixels.
Specifically, superpixels with more than 10% of the pixels having a value of 0 (background)
were classified as background.
(5) Foreground pixels were clustered into three regions: periportal, pericentral, or midzone.
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For this, each superpixel was reduced to a 5-channel vector, where each element represented
the mean intensity of the channel in the superpixel. K-means clustering was then used to
group these vectors into three clusters. The cluster centers were sorted in ascending order
by Euclidian distance. Given the high expression of the CYPs and GS in the pericentral,
and low expression in the periportal zone, the cluster labels corresponded to periportal,
midzone, and pericentral. These labels were mapped back to the superpixel representation
labeling each foreground pixel as either pericentral, periportal, or midzone. A mask was
created from the background pixels and contour detection was used to obtain the vessels
and tissue boundary on the slide. Using the information from the clustered foreground
pixels, the vessels were classified as pericentral or periportal. To achieve this, each vessel
contour was transformed into a binary mask. In addition, a second mask was created by
dilating the vessel contour mask, and the difference of the two masks was obtained using
the XOR operator. The difference was used to select pixels adjacent to the vessel from the
foreground image and the number of periportal, midzone, and pericentral labeled pixels in
this selection was counted. As anticipated, the number of pericentral labels was higher for
pericentral vessels and vice versa for periportal vessels. The count vectors for all vessels
were clustered into two clusters using the K-means algorithm. Contours in the cluster with
a higher number of pericentral pixels were classified as pericentral while the other vessels
were labeled as periportal.
(6) The intermediate result was an array labeling the pixels as background, periportal,
midzone, or pericentral, along with a list of periportal and pericentral vessel contours. A
grayscale representation was created from the clustered foreground and vessel contours,
with pericentral vessels colored black (zero) and periportal vessels colored white (255). The
foreground zones were uniformly distributed across the grayscale spectrum in between, with
dark and light corresponding to pericentral and periportal zones, respectively.
(7) Finally, an OpenCV implementation of a thinning algorithm was used to skeletonize the
grayscale representation. The remaining lines are in the expected center of the periportal
zones and vessels (bright zones), marking the potential boundaries.
(8) To facilitate polygonization, a pixel-walking algorithm was developed that recursively
aggregates neighboring true pixels into line segments. Line segments are ordered lists of
coordinates representing adjacent pixels. The algorithm operates on a binary image where
8-connected white pixels mark the lines. First, the images were converted into a list of
coordinates of the white pixels. Then three lists were initialized: one to store completed
segments, one for segments awaiting processing, and one for nodes, which are pixels with
multiple adjacent pixels. The algorithm proceeds by iterating through the list of pixels.
The neighbors of the first pixel are examined to initialize the first line segments, which
are appended to the segments-to-do list. As long as there are segments to process, the
next segment is retrieved and analyzed. Neighboring pixels are evaluated for the last pixel
in the current segment. If a single neighboring pixel is found, it is appended to extend
the segment, continuing the process. If no neighbors exist, the segment is finished and
added to the list of finished segments. If multiple neighbors exist, new line segments are
created from the current pixel to each neighboring pixel, and these segments are added to
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the segments-to-do list. Finally, the current segment is completed and added to the list of
finished segments.
(9) The result is a list of line segments representing the boundaries. These segments were
then converted to polygons using the Shapely [27] library. All line segments that were not
part of a closed path were discarded. The polygons delineating the lobule boundaries were
integrated with the vessel data from the vessel classification steps, and the combined data
was exported as GeoJSON.

3.1.2 Protein Portality Map

One objective of this thesis was to quantify the differences in zonated protein expression
within liver lobules across different species. After identifying the boundaries of the lobules,
the next step was to integrate this spatial information with the protein signals to derive
expression gradients. Therefore, the relative position of each pixel in the lobule was
calculated. The portality p was defined as

p(x, y) = 1− dc(x, y)

dc(x, y) + dp(x, y)
∈ [0, 1] (3.1)

where dc and dp denote the distance of a pixel to the nearest central and portal pixel,
respectively.

For each identified lobule, a periportal and a pericentral boundary mask were created
using the lobule boundary and vessel polygons. In the pericentral boundary mask, all pixels
were set to false if they were situated within a central vessel or if the weighted intensity
across all channels fell within the 99th percentile. This was necessary because not every
detected lobule contained a detected central vessel. In the portal boundary mask, all pixels
were set as false if they were situated outside of the lobule boundary or if they were located
within a portal vessel. The portal and central distances were calculated by applying the
OpenCV distance transform function to the aforementioned masks. This function calculates
the distance for each pixel to the nearest background pixel.

For each protein, the intensity was background corrected and normalized by

IN(x, y) =
I(x, y)− Ibg
Imax − Ibg

∈ [0, 1] (3.2)

where IN(x, y), Ibg and Imax denote the intensity of the pixel, the background intensity, and
the maximum intensity on the slide, respectively. The maximum intensity was defined as
the 99%tile of the foreground pixel intensities to avoid outliers. The background intensity
was estimated by the 20th percentile of the foreground pixels of the GS slide for each
subject. GS expression is limited to a small area of the lobule around the pericentral vessel,
allowing for the remainder to be used as a robust background estimate. For each pixel, the
normalized intensity and portality were recorded in a data frame for subsequent analysis.

A visualization of the output of the described image analysis pipeline for exemplary
subjects is presented in Figure 3.3
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Figure 3.3: Lobule boundary detection and calculation of portality: (A) H&E
staining images from normal liver tissues of all four species (mouse, rat, pig, and human)
are presented, illustrating the lobular architecture specific to each species. (B) Images are
normalized and color stains are separated to ensure optimal comparison across species. This
step involves transforming the images to a consistent format and isolating the different stains
used in the analysis. (C) The detection process clearly outlines the lobular boundaries
and identifies the distribution of lobules, central vessels, and portal vessels. The example
shown uses the CYP2E1 staining component to demonstrate the detection and delineation
of these regions. (D) The distance between central and portal regions is mapped on each
lobule. This mapping enables a quantitative analysis of the spatial arrangement within the
lobules, providing insight into the zonation patterns of the lobules across different species.
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3.2 Quantification of macrosteatosis droplets in whole-slide
images (WSI)

In this work, an image analysis workflow was developed to detect macrosteatosis whole slide
images (WSI) of the liver. The macrosteatosis segmentation workflow consisted of two steps:
(1) binary semantic segmentation by the U-Net model into steatotic and non-steatotic
pixels and (2) postprocessing and clump separation to obtain individual droplet instances.
Examples of the intermediate results of the detection workflows are presented in Figure 3.4.

Figure 3.4: (A) Macrosteatosis droplet detection: Example predictions on image
tiles for a 2W HFD mouse, a 4W HFD rat, a steatotic human, and a control rat sample.
The columns from left to right depict (1) the stain-normalized H&E stain input image.
(2) the ground truth annotations that were created from the image annotations. (3) The
semantic prediction output of the U-Net model. (4) The final instance segmentation result
after postprocessing and clump separation.

3.2.1 Steatosis Segmentation Performance

The performance of the segmentation model was evaluated on the test data set consisting
of 15 images. The pixel-wise Dice-Similarity coefficient (DSC (SemS)) was computed to
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evaluate the semantic segmentation performance of the U-Net model. For evaluation of the
instance segmentation by the model in combination with blob separation post-processing,
the instance-wise Dice-Similarity coefficient (DSC (InS)), the Panoptic Quality PQ, and
the Normalized Surface Distance (NSD) were calculated. The metrics were calculated per
image and aggregated by averaging over the data set. The metrics were also analyzed per
subgroup to provide a detailed view of the model performance on each subset of the image
data. The results are visualized in Figure 3.5. Numerical values are reported in Table S15.
The model performs well on human samples, rat samples of both 2W HFD and 4W HFD
groups, and mouse 4W HFD samples. However, the metrics show lower performance for the
2W HFD group. In one instance involving a test image from the 2W HDF mouse group,
the evaluation metrics returned a value of zero. Such cases can occur when the prediction
set is empty while ground truth objects are present, or vice versa. Mice generally exhibited
smaller droplet sizes and a smaller total area of steatosis on the slides (Figures 3.7, 3.8).
These lower performance metrics suggest that the model struggles to accurately detect
smaller droplets, indicating that it is not yet fully optimized for such cases.
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Figure 3.5: Validation metrics for image segmentation: The pixel-wise (semS), and
instance-wise (InS) Dice Similarity Coefficient (DSC), the Panoptic Quality (PQ), and the
Normalized Surface Distance (NSD) were calculated per test image in and averaged over
each presented subset.

3.2.2 Quantification of Macrosteatosis

The steatosis detection workflow described in Section 2.5 was applied to the WSI resulting
in a data set of detected macrosteatosis droplets. An example of the detection result on
a human WSI is shown in Figure 3.6. The dataset included the position on the slide
(centroid), and the geometrical properties perimeter, surface area, and minimum bounding
circle radius for each detected droplet.
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Figure 3.6: Macrosteatosis detection on WSI: (A) Human (B) Close-up section of
the same human WSI (C) Mouse 2W HFD (D) Mouse 4W HFD (E) Rat 2W HFD (F)
Rat 4W HFD. The images were obtained using QPath [8].

The macrosteatosis detection pipeline detected 152k and 335k droplets for the mouse 2W
HFD, and 4W HFD groups, 782k and 418k droplets for the rat 2W HFD and 4W HFD
groups, and 303k droplets for the human steatotic samples, respectively. The median (Q1,
Q3) droplet sizes were 71.9 (50.8, 109.8)µm2 and 104.0 (63.2, 182.5)µm2 for mouse 2W
HFD and 4W HFD and 124.5 (75.2, 162.3)µm2 and 246.5 (131.7, 375.0)µm2 for rats 2W
HFD and 4W HFD, respectively. Human steatotic samples displayed a median droplet
size of 209.8 (102.4, 400.6)µm2. The droplet statistics are displayed in Figure 3.7. Another
finding was that for both mice and rats, the variability of droplets as measured by the
inter-quartile range (IQR) increased from the 2W HFD (mouse 59µm2, rat 87µm2) to
the 4W HFD group (mouse 119µm2, rat 243µm2). The human steatotic samples showed
the largest variability in droplet size with an IQR of 298 µm2. Unlike the rat and mouse
samples, which were obtained from animals that were housed and fed under controlled
conditions, the human samples were obtained from patients with a variety of backgrounds
and medical conditions. As a result, steatosis patterns are expected to vary considerably
between subjects, which is reflected in the variability of the data.
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Figure 3.7: Geometrical properties of macrosteatosis droplets: For all species
and steatotic groups, the droplet perimeter, area, and minimum bounding radius were
calculated for each droplet per section. The results are depicted using violin plots. The
boxes represent the first quartile (Q1) and third quartile (Q3). The whiskers extend to
the last datum less than Q3 + 1.5 · IQR and the first datum greater than Q1− 1.5 · IQR,
respectively. IQR denotes the interquartile range (Q3−Q1).

Additionally, the droplet density and surface coverage were analyzed on the WSI. Droplet
density was calculated as the ratio of the droplet count on the slide to the total tissue
area of the slide. The surface coverage was defined as the ratio of the summed area of all
droplets on the slide to the total tissue area on the slide. The statistics are visualized in
Figure 3.8.
The median (Q1, Q3) droplet density was 212 (90, 385)mm−2, 564 (324, 734.2)mm−2 for
2W HFD and 4W HFD in mice, respectively. For rat 2W HFD and 4W HFD, droplet
densities were 1054 (532, 1589)mm−2 and 1458 (1376, 1536)mm−2, respectively. Human
steatotic samples displayed droplet densities of 294 (225, 305)mm−2.

The median (Q1, Q3) surface coverage was 1.6 (0.7, 3.2)%, 8.3 (3.7, 10.5)% for 2W
HFD and 4W HFD in mice, 11.2 (6.4, 19.1)%, 42.0 (38.7, 42.9)% for 2W HFD and 4W
HFD in rats, and 7.7 (7.3, 8.6)% for steatotic human samples, respectively.

These results show that a longer duration of the diet resulted in greater amounts of
macrosteatosis in mice and rats. The results suggest that in mice and rats, a high total
droplet density and a higher droplet area fraction correlated with the median droplet sizes
(Figures 3.7 and 3.8). However, human samples had a median droplet size comparable to
that of 4W HFD rats (Figure 3.7). The droplet density and area fraction are lower than
in the same rat group. This shows that in human steatotic samples, steatosis tends to
affect smaller more localized areas whereas the high-fat MCD has a more homogeneous
distribution of steatosis across the tissue. This distribution is well aligned with the visual
impression of the WSI (Figure 3.6).

Droplet density in 2W HFD rat samples shows extensive variability as indicated by
the inter-quartile range IQR of 1058mm−2 with the highest values comparable to the 4W
HFD group, while the surface coverage is lower than in the 4W HFD group. This finding
suggests that a large portion of the droplets emerge in the first two weeks of the diet in
rats and only grow during the third and fourth weeks.
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Figure 3.8: Macrosteatosis droplet density and surface coverage: Droplet density
and surface coverage on the WSI were analyzed for all species and steatotic groups. Droplet
density was calculated as the fraction of the droplet count on the WSI and the total tissue
area of the WSI. The surface coverage was defined as the fraction of the summed area of
all droplets on the WSI and the total tissue area of the WSI. The results are depicted
using box plots. The boxes represent the first quartile (Q1) and third quartile (Q3). The
whiskers extend to the last datum less than Q3 + 1.5 · IQR and the first datum greater
than Q1− 1.5 · IQR, respectively. IQR denotes the interquartile range (Q3−Q1).

3.3 Lobular Geometry

3.3.1 Species-Specific Lobular Geometry

Using the lobule segmentation algorithm described in the methods section (Section 3.1), a
set of lobule polygons was obtained. Based on the segmented lobules, species-specific lobular
geometry was assessed using several key geometric parameters: perimeter (circumferential
length of the lobule’s outer edge), area (surface area of the lobule), compactness (ratio
of the lobule’s polygonal area to that of a circle with the same perimeter), and minimum
bounding radius (radius of the minimum bounding circle enclosing the lobule). Figure
3.9A illustrates the resulting geometric parameters across different species, with detailed
numerical values available in Supplementary Table S1. These parameters provide insights
into the structural variation of lobules between species and highlight correlations between
these geometric features.

Geometric parameters were calculated for 1,530 segmented lobules in mice, 669 in
rats, 698 in pigs, and 1,074 in humans. Across species, there is a noticeable increase in
lobule size, with larger species exhibiting larger lobules. For example, the median (Q1,
Q3) radius of murine lobular boundaries was 330 (249, 442)µm, while human lobules were
559 (309, 830)µm. The specific liver biopsy site may also influence these differences in human
lobular geometry. Similarly, the perimeter of liver lobules increased with species size, approx-
imately 1.7-fold from mice (1.94 (1.44, 2.64)mm) to humans (3.37 (1.84, 5.09)mm). As ex-
pected, the lobular area increased about three-fold across species, from 0.19 (0.11, 0.35)mm2
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in mice to 0.53 (0.16, 1.17)mm2 in humans. In contrast, compactness, which indicates
lobular roundness, showed a slight decrease with species size. Compactness mean and
standard deviation (SD) were highest in mice (0.64 (0.10)), followed by rats (0.62 (0.11)),
pigs (0.61 (0.10)), and humans (0.59 (0.12)). This suggests that larger lobules tend to be
less round across species. Statistical analysis revealed significant differences in lobular size
but little variation in compactness between species. All species showed similar levels of
individual variability in geometric parameters, with slightly higher variability observed in
humans compared to other species. Intra-individual variability in geometric parameters
was negligible across species, as indicated by consistent results within subjects and lobes
(Figure 3.10). The correlation structure of geometric parameters was highly consistent
across species (Figure 3.9B). Area and perimeter showed strong positive correlations (r =
0.99) in all species, indicating that larger lobules tend to have longer perimeters. Conversely,
compactness exhibited weak to moderate negative correlations with perimeter (r in the
range of -0.54 to -0.63) and area (r in the range of -0.44 to -0.55), suggesting that larger
lobules may appear more oval due to variable sectioning angles.

Comparison of the medians of the lobular geometry parameters across subjects within
each species revealed no significant differences (Figure 3.10). This result underscores the
robustness of the segmentation algorithm across different samples.

For mice, samples from different liver lobes were analyzed. Comparing the geometrical
features between lobes of different mice did not reveal any statistically significant differences
(Figure 3.11). Therefore, I conclude that lobular geometry is homogeneous across the entire
liver in mice.

The similarity in median values and range of geometric parameters across species (Figure
3.9A), along with consistent correlation structures (Figure 3.9B), suggests a robust and
comparable 3D structure of hepatic lobules across species. In conclusion, lobular geometry
appears to be a stable feature with low variability within and between species, but significant
variability is observed between different lobules.
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Figure 3.9: (A) Quantification of species-specific lobular geometry For all species,
the lobular perimeter, area, compactness, and minimum bounding radius were calculated
for each lobule per section. The results are depicted using box plots and point clouds. The
boxes represent the first quartile (Q1) and third quartile (Q3). The whiskers extend to
the last datum less than Q3 + 1.5 · IQR and the first datum greater than Q1− 1.5 · IQR,
respectively. IQR denotes the interquartile range (Q3−Q1). Significance levels are indicated
as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) Example result
of the lobule detection workflow: From left to right for species mouse, rat, pig, and
human. The black bas indicate 1mm. (C) Correlation of geometric parameters:
The correlation between the geometric parameters was assessed using the Spearman rank
correlation coefficient. Different colors represent different species: blue for mice, orange for
rats, gray for pigs, and green for humans. Adapted from Albadry et al. [1].
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Figure 3.10: Intra- and inter-individual variability of lobular geometric parame-
ters in human, pig, rat, and mouse The boxes represent the first quartile (Q1) and
third quartile (Q3). The whiskers extend to the last datum less than Q3 + 1.5 · IQR and
the first datum greater than Q1− 1.5 · IQR, respectively. IQR denotes the interquartile
range (Q3−Q1). Significance levels are indicated as follows: *p < 0.05, **p < 0.01, ***p
< 0.001, ****p < 0.0001. Adapted from Albadry et al. [1].
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Figure 3.11: Intra-lobe variability in lobular geometric parameters in mice The
boxes represent the first quartile (Q1) and third quartile (Q3). The whiskers extend to
the last datum less than Q3 + 1.5 · IQR and the first datum greater than Q1− 1.5 · IQR,
respectively. IQR denotes the interquartile range (Q3−Q1). Significance levels are indicated
as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Adapted from Albadry
et al. [1].
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3.3.2 Impact of Macrosteatosis on Lobular Geometry

The lobule segmentation algorithm was applied to whole slide images (WSI) of steatotic
liver samples from mice, rats, and humans. For mice and rats, two groups were analyzed:
one group was fed a high-fat diet (HFD) for two weeks (2W HFD) and another for four
weeks (4W HFD). As with the control samples, the geometric parameters — perimeter,
area, compactness, and minimum bounding radius — were compared across the control,
2W HFD, and 4W HFD groups for both species and between the control and steatosis
groups for human samples (Figure 3.12).

In all species, the steatotic groups showed similar distributions. A significant increase in
median lobular area was observed in mice after 4 weeks of a high-fat diet (4W HFD), with an
18% increase (p=1.8e-4). In contrast, non-significant increases in lobule area were found in
2W HFD mice (6%, p=1), 2W HFD rats (13%, p=0.18), 4W HFD rats (18%, p=0.13), and
steatotic human samples (4%, p=0.09) compared to their respective controls. In addition,
the median values for perimeter and minimum bounding radius showed significant increases
in the 4W HFD group compared to the control group. However, no significant differences
were observed in the compactness of lobules between the control and steatotic groups across
all species.

The geometric parameters of the lobules showed high variability in both control and
steatotic groups. Although mostly insignificant, there was a trend toward increased lobule
size in the steatotic groups. However, the extent of steatosis varied considerably between
individuals within the same group (Figure 3.8) and could be heterogeneously distributed
across the slide, leading to different amounts of steatosis in individual lobules.

Therefore, the effect of fat content within individual lobules on lobular geometry was
evaluated. The area of the macrosteatosis droplets within each lobule was summed for all
detected lobules, and the geometric parameters of the lobule were plotted against the total
macrosteatosis droplet area (Figure 3.13). The data shown includes all data points from
the 2W HFD and 4W HFD groups for mice and rats, as well as the Steatosis group for
human samples.

The area, perimeter, and minimum bounding radius showed similar correlations across
all species. The strongest correlations were observed in the human data (r=0.92–0.93),
followed by rat (r=0.66–0.67), and mouse (r=0.52–0.53). Compactness showed a weak to
moderate negative correlation with lobule fat content, with the strongest correlation again
seen in the human data (r=-0.39), followed by rat (r=-0.23) and mouse (r=-0.20).

These results suggest that a higher fat content increases lobular size and are consistent
with a previous report [32].
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Figure 3.12: Effect of steatosis on lobular geometry: For all species, the lobular
perimeter, area, compactness, and minimum bounding radius were calculated for the
control and the steatotic groups for each lobule per section. The results are depicted using
violin plots. The boxes represent the first quartile (Q1) and third quartile (Q3). The
whiskers extend to the last datum less than Q3+1.5 · IQR and the first datum greater than
Q1− 1.5 · IQR, respectively. IQR denotes the interquartile range (Q3−Q1). Significance
levels are indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The
right-most column displays the fold-change of the median of the steatotic groups compared
to the control group against the p-value of the group-wise post-hoc test between the groups.
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Figure 3.13: Correlation of lobular geometry and lobular fat content: Lobular
perimeter, area, compactness, and minimum bounding radius were calculated for all lobules
and plotted against the total macrosteatosis droplet area within the lobule. The displayed
data contains all detected lobules in the WSIs of 2W HFD and 4W HFD groups of mouse
and rat, and the steatosis group of humans. Fat content was calculated by summing the
area of all the macrosteatosis droplets located in each lobule. The correlation between the
lobular geometric parameters was assessed using the Spearman rank correlation coefficient.
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3.4 Hepatic Zonation

3.4.1 Quantification of Zonated Protein Expression

The subsequent analysis focused on quantifying the zonated expression of CYP enzymes
along the portal-venous axis across entire liver lobules in four species (Figure 3.14). By
leveraging the segmented lobules, the position-dependent protein expression within each
species was precisely determined. Each pixel within a lobule was assigned a position,
ranging from periportal (PP, 0) to perivenous (PV, 1), based on their proximity to the
nearest periportal or perivenous region. This approach allowed analysis of zonation patterns
of GS and CYP proteins across different lobules and species.

Analysis of the combined zonated expression of all markers revealed distinct patterns
unique to each protein and species. As expected, histological staining with Hematoxylin and
Eosin (HE) showed a consistent flat line across all species, as HE staining primarily delineates
the morphological structure of hepatic lobules without indicating zonation differences along
the sinusoid.

For clarity, the zones along the portal-venous axis are referred to as zone 1 (periportal),
zone 2 (midzone), and zone 3 (pericentral) in this section.
Glutamine Synthetase (GS) demonstrated a consistent gradient and zonation pattern
along the entire portal-venous axis across all four species, as shown by the superimposed
plots of normalized staining intensity. GS showed static expression primarily in zone 3,
encompassing two to three layers of pericentral hepatocytes, with no observable periportal
distribution pattern in any of the species.
Cytochrome P450 1A2 (CYP1A2) displayed relatively similar gradient and zonation
patterns in mice, rats, and humans, predominantly localized in zone 3 and extending into
zone 2 within the adjacent five to six rows of pericentral hepatocytes. In contrast, pigs
showed a gradient distribution of normalized intensity predominantly in zones 3 and 2,
extending into zone 1 of periportal hepatocytes.
Cytochrome P450 2D6 (CYP2D6) exhibited a uniform and consistent zonation pattern
across all species, showing a panlobular distribution within the liver lobules along the
portal-venous axis. Notably, CYP2D6 did not show a distinct zonation pattern with higher
protein levels in the perivenous region compared to the periportal region.
Cytochrome P450 2E1 (CYP2E1) displayed a linear gradient distribution of normalized
intensity across liver lobules in different species, predominantly in zones 3 and 2. Rats
showed a higher intensity in zone 1 with a flatter gradient compared to other species.
Cytochrome P450 3A4 (CYP3A4) intensity gradients were similar in mice and humans,
primarily localized in zone 3 and extending into zone 2. In contrast, rats and pigs showed
a distinct gradient distribution compared to mice and humans, with higher normalized
intensity observed in zones 3 and 2 and extending into zone 1 periportal hepatocytes.
Humans exhibited the strongest periportal to perivenous gradient among the species.
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Figure 3.14: Zonated expression of liver proteins
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Figure 3.14 (cont.): Zonated expression of liver proteins: Zonation patterns of HE,
GS, CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were compared among mouse (blue), rat
(orange), pig (gray), and human (green) samples. Normalized staining intensity (per slide)
was plotted against portality, representing the relative position between periportal (PP)
and perivenous (PV) zones within each lobule. Data were divided into 12 bins ranging
from PP to PV. Median values were calculated for all lobules across all individuals. Box
plots show the median and interquartile range, with whiskers representing the 5th and 95th
percentiles. The color coding is as follows: blue for mice, orange for rats, gray for pigs,
and green for humans. The number of lobules analyzed for each species is indicated (n).
Adapted from Albadry et al. [1].

3.4.2 Effects of Macrosteatosis on Zonated Protein Expression

The expression gradients for the steatotic samples from the 2W HFD and 4W HFD groups
in mice and rats and the steatosis group in humans were analyzed using the same approach
as previously described for the control samples. Significant variability in protein signal
intensity along the portal-venous axis was observed in all species and groups. In mice, no
inter-group differences were detected in the gradients (Figure 3.15). In rats, a decrease
in the HE signal was observed in the 4W HFD group compared to the Control and 2W
HFD groups. A similar trend was observed for CYPs 2D6, 2E1, and 3A4, where the signal
intensity was higher in the Control group than in the 2W HFD and 4W HFD groups.

In both rats and humans, the most significant deviations from the control group were
observed in the zones with the highest steatosis surface coverage (Figure 3.18). Specifically,
the gradient in the rat 4W HFD group exhibited an upward trend in zone 1 (Figure 3.16).
In human samples, the greatest deviations were found in zones 1 and 2 (Figure 3.17). These
results suggest that protein expression patterns may be slightly altered in regions with high
levels of macrosteatosis.
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Figure 3.15: Zonated expression of liver proteins in mouse control and steatosis
samples: Zonation patterns of HE, GS, CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were
compared among mouse control, 2W HDF, and 4W HDF samples. Normalized staining
intensity (per slide) was plotted against portality, representing the relative position between
periportal (PP) and perivenous (PV) zones within each lobule. Data were divided into
12 bins ranging from PP to PV. Median values were calculated for all lobules across all
individuals. Box plots show the median and interquartile range, with whiskers representing
the 5th and 95th percentiles. The number of lobules analyzed for each species is indicated
(n).
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Figure 3.16: Zonated expression of liver proteins in rat control and steatosis
samples: Zonation patterns of HE, GS, CYP1A2, CYP2D6, CYP2E1, and CYP3A4
were compared among rat control, 2W HDF, and 4W HDF samples. Normalized staining
intensity (per slide) was plotted against portality, representing the relative position between
periportal (PP) and perivenous (PV) zones within each lobule. Data were divided into
12 bins ranging from PP to PV. Median values were calculated for all lobules across all
individuals. Box plots show the median and interquartile range, with whiskers representing
the 5th and 95th percentiles. The number of lobules analyzed for each species is indicated
(n).
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Figure 3.17: Zonated expression of liver proteins in human control and steatosis
samples: Zonation patterns of HE, GS, CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were
compared among human control and steatosis samples. Normalized staining intensity (per
slide) was plotted against portality, representing the relative position between periportal
(PP) and perivenous (PV) zones within each lobule. Data were divided into 12 bins ranging
from PP to PV. Median values were calculated for all lobules across all individuals. Box
plots show the median and interquartile range, with whiskers representing the 5th and 95th
percentiles. The number of lobules analyzed for each species is indicated (n).
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3.4.3 Zonated Distribution of Macrosteatosis

The previously described method was employed to detect lobules and calculate the portality
for the steatotic slides. The resulting dataset contained a portality value ranging from 0 to
1 for each pixel, with a resolution of level 7, corresponding to a pixel size of 28.16 µm. The
steatosis dataset, which included the positions and geometrical features of the steatosis
droplets, was collected at the original resolution level 0, with a pixel size of 0.22 µm.

To combine these datasets, the high-resolution macrosteatosis data was binned into
cells corresponding to the pixel size of the low-resolution portality dataset, and the droplets
were mapped based on whether their centroids fell within the corresponding portality pixel.
Since multiple droplets could be present within a single pixel of the portality dataset, the
total droplet area and the mean droplet area were calculated for each pixel by aggregating
the data from the contained droplets using sum and mean, respectively.

The resulting dataset included information about the pixel position, portality, and the
mean and total areas occupied by macrosteatosis droplets within each 28.16 µm x 28.16 µm
pixel. The total surface coverage was calculated by dividing the total droplet area within a
pixel by the area of the pixel. Pixels were then binned by portality into 12 equally sized
bins, enabling the visualization of the distribution of surface coverage and mean droplet
area along the portal-venous axis. The surface coverages were visualized as percentile bands.
Notably, even in highly steatotic samples, a significant number of pixels did not contain
any droplets (Figure 3.18). This visualization with percentile bands provides insight into
these two parameters.

For the further analysis of macrosteatosis zonation patterns, two quantities are intro-
duced: steatotic fraction (SF) and top surface coverage (TSC). SF represents the percentile
band that intersects zero on the surface coverage (Y-) axis, effectively measuring the
proportion of pixels containing any steatosis droplets. TSC denotes the 95th percentile of
the surface coverage, indicating the highest levels of steatosis within the sample.
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Figure 3.18: Zonated distribution of macrosteatosis: The portal-venous distribution
of macrosteatosis droplets (MS) droplets was analyzed. The first row displays exemplary
sections of H&E stained WSI with the lobule boundaries (yellow) and the detected ma-
crosteatosis droplets (green). The second row displays the surface area coverage of MS,
calculated as the fraction of the total macrosteatosis droplet area in a pixel and the area of
the pixel. The colored bands depict the percentiles for the bins. The third row shows the
mean MS droplet area, representing the average droplet area for each pixel. For this plot
only pixels containing at least one droplet were considered.

In mice, the 2W HFD group showed the least amount of steatosis, characterized by a
periportal pattern. In this group, the steatotic fraction (SF) reached up to 25% and the
total surface coverage (TSC) was 25% in the periportal zone. Both measures decreased
progressively toward the midzone, resulting in less than 5% of pixels in the perivenous
zones containing any macrosteatosis droplets.

Similarly, the 4-week high-fat diet (4W HFD) group also displayed a periportal steatosis
pattern. In this group, the SF was 45% and the TSC was 50% in the periportal zone.
However, both SF and TSC decreased sharply across the midzone, with the pericentral
zone showing an SF of less than 10% and a TSC of less than 5%.

Rats exhibited more homogeneous steatosis patterns in both high-fat diet (HFD) groups
compared to mice. These patterns showed higher levels of steatosis in the periportal and
midzone, with a reduction in the pericentral zone. In the 2W HFD group, the steatotic
fraction (SF) was 65% and remained consistent until the midzone, where it decreased to
30% in the pericentral zone. Total surface coverage (TSC) was 50%, only declining in the
pericentral zone to 25%.

In the 4W HFD group, a uniform distribution of macrosteatosis was observed, with a
decrease only in the last two pericentral bins. The SF remained above 80% and decreased to
70% in the most pericentral bin. Similarly, the TSC was consistently above 80%, decreasing
to 75% in the pericentral bin.
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In contrast to the mouse and rat samples, the human samples showed a midzone to
perivenous steatosis pattern. In the periportal zone, the steatotic fraction (SF) and total
surface coverage (TSC) were as low as 12% and 25%, respectively. Steatosis peaked in the
third and fourth pericentral bins, with an SF of approximately 25% and a TSC nearing
70%. It is important to note that the samples analyzed were obtained from subjects with
varying degrees of steatosis and varying medical conditions. Consequently, the observed
patterns represent an averaged representation of the diverse steatosis distributions present
in each patient’s sample.
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4 Discussion

4.1 Image Analysis Workflow for Lobule Segmentation

In this study, an image analysis workflow was developed to detect and segment liver lobules
on histology slides, eliminating the need for manual annotations by a trained pathologist.
The method relies on protein expression gradients derived from multiple stains to identify
liver lobules, requiring a set of adjacent, aligned whole slide images (WSIs) stained for
different proteins, with expression gradients along the periportal-perivenous axis.

For optimal results, it is crucial that the WSIs are of high quality, with minimal tissue
artifacts such as ruptures and folds, and that the staining is homogeneous to avoid variability
in signal levels. The precise number of stained slides required and the specific combination of
protein gradients necessary for robust segmentation remain areas for further investigation. If
proteins exhibit similar expression patterns, the information may be redundant, suggesting
that selecting proteins with distinct spatial distributions could suffice, thereby reducing
computational demands.

Most previous studies have relied on pathologist annotations to mark central veins
and periportal triads. However, such annotations were not available for this study. To
validate the segmentation method, I visually compared the results with pig WSIs where
physiological septa naturally delineate lobular boundaries. The automatically detected
lobules showed excellent agreement with those defined by the septa. However, since the
septa appear as areas without protein signal, and the algorithm uses this information to
place boundaries, the septa are not an ideal independent reference for validation. For a
rigorous assessment, expert annotations of lobules would be necessary.

Protein intensities were normalized and background-corrected on a per-slide basis,
ensuring data accuracy and reliability. While this normalization is adequate for inter-
species comparisons, it limits the ability to compare absolute protein expression between
steatotic and control groups. Given the inherent variability in staining procedures (e.g.,
differences in lab personnel, protocols, or antibody binding) and the potential non-linear
relationship between protein amount and staining intensity, comparing absolute protein
values is generally challenging. However, when staining is performed within the same batch,
relative differences can be assessed semi-quantitatively.

The intensity analysis was conducted at the lowest resolution level (128-fold downscale
of the full-resolution image). The lower resolution levels of the pyramidal images were
generated by applying a Gaussian filter repeatedly and then downscaling by a factor of two.
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This process may introduce bias in the observed protein intensity, particularly in highly
steatotic areas, where substantial white space at higher resolutions could affect the results.
Future work should explore alternative downscaling methods to quantify these effects more
accurately. Understanding these potential artifacts is essential, especially when interpreting
the slight relative decreases observed in expression gradients in highly steatotic regions. An
alternative approach could involve retrieving intensities from higher resolution levels and
aggregating them into bins matching the size used for the portality map, thereby avoiding
the artifacts introduced by downscaling.

4.2 Quantification of Macrosteatosis

In addition, this work introduced a hybrid approach to detecting macrosteatosis droplets in
whole slide images (WSI). By leveraging transfer learning, a UNET model with a pretrained
VGG16 encoder was employed, enabling the development of a robust model despite the
limited size of the training dataset. To enhance the accuracy of semantic segmentation, a
blob separation postprocessing step was implemented, allowing for precise identification
of individual steatosis droplets. The UNET segmentation was designed to operate on
image tiles, ensuring that segmentation performance is not constrained by the size of the
WSI. This approach also allows for scalability, as the tile size can be adjusted to optimize
performance on more powerful GPU systems.

Evaluation metrics indicate that the model performs consistently well on samples with
larger steatosis droplets. However, a decrease in performance was observed in samples
from the 2-week high-fat diet (2W HFD) mice group, which exhibited smaller droplets and
less macrosteatosis. The model was pretrained on the training dataset from [63], where
human samples were annotated based on the large droplet fat definition by Neil et al. [53].
Consequently, the model may be biased towards recognizing larger droplets. Additionally,
accurately distinguishing individual small droplets within microsteatotic areas can be
challenging, potentially leading to inconsistent annotations. To improve the detection of
macrosteatosis, it is essential to incorporate more training data specific to the analyzed
dataset, with a particular focus on weighting samples containing smaller steatosis droplets.

Model training was conducted on hardware that limited the batch size to 4. Ideally,
training on more advanced hardware would allow for larger batch size and the inclusion of
more annotated data. Given the small training dataset, an 80/10/10 split for the training,
validation, and test datasets was used, which led to the unequal representation of different
groups within the test set due to random splitting.

The test data masks were generated semi-automatically. To evaluate the instance
segmentation achieved through the blob separation process, the separated clumped steatosis
blobs were assessed in the annotation masks using keypoint annotations provided by
annotators. The boundary regions obtained through the watershed technique sometimes
deviated from physiological regions, potentially impacting validation metrics. Despite these
limitations, the partial automation of the image annotation task significantly reduced the
workload on annotators. Rather than manually delineating macrosteatosis boundaries,
annotators focused on refining the generated keypoints by adding missing ones and removing
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incorrect ones.
The combination of lobule segmentation and steatosis detection provided a tool to

quantify the zonal distribution of macrosteatosis, enabling a fine-grained analysis of zonal
steatosis droplet coverage and size.

In conclusion, while the presented approach for macrosteatosis detection demonstrates
robust performance for larger steatosis droplets, the model’s accuracy diminishes for
smaller droplets, particularly in samples with low steatosis levels. Future work should
prioritize improving annotation consistency, expanding the training dataset, and utilizing
more powerful hardware to enhance overall model performance. The integration of lobule
detection with steatosis quantification enabled automated zonal evaluation of steatosis,
offering valuable insights into its distribution within the liver.

4.3 Lobular Geometry

I developed an image analysis pipeline for the prediction of liver lobules in liver histology
WSI. This approach can segment a whole tissue section on a slide into liver lobules without
the requirement of annotations by a pathologist. I demonstrated that this approach
can be employed on normal and steatotic samples. Significant inter-species differences
in median lobular size were observed, with the lobule area increasing from mouse, rat,
human, to pig. These findings are consistent with those reported by Lau et al. [46],
who employed Voronoi tessellation to quantify lobular areas. They reported mean ± SD
lobule areas of (0.69± 0.02)mm2 for pigs and (0.89± 0.51)mm2 for humans. My results
demonstrated comparable mean lobule areas of (0.72 ± 0.57)mm2 for pigs and a higher
mean of (0.96± 1.36)mm2 for humans. Segovia-Miranda et al. [67] analyzed lobule radii
by finding the minimum distance between the central vessel and the closest portal tract on
a stained WSI. Their median (Q1, Q3) values reported for normal 513 (427, 524)µm and
steatotic human samples (541 (531, 586)µm), are in good agreement with the values I found
for normal human samples (559 (309, 830)µm) and steatotic samples (562 (323, 916)µm)

Schwen et al. [66] reported lobular areas in steatotic mice of (0.281± 0.157)mm2, which
is within the ranges of my findings for 2W HFD ((0.27± 0.24)mm2) and 4W HFD mice
((0.30 ± 0.29)mm2). For all species, I found larger variability as expressed by standard
deviation and interquartile ranges compared to the literature. The distribution of the lobular
geometry parameters was highly skewed, seemingly log-normally distributed. The observed
high variability may be partly attributed to the varying position, size, and 3-dimensional
(3-D) shape of the lobules relative to the 2-D sectioning plane. It is important to note that
in this study, all structures identified through the image analysis workflow were included in
the final analysis. No manual selection was performed to exclude slides with less distinct
lobular patterns or lobules based on the visibility of central vessels and portal triads. This
comprehensive approach may have contributed to increased variability in the resulting
dataset.

Despite intra-subject variability, no significant inter-subject or inter-lobe differences in
lobular geometry were observed, highlighting the robustness of the image analysis workflow
presented.
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The analysis of lobular geometry in steatotic samples showed a tendency towards
increased lobule sizes across species. Although significant changes were only observed in
the 4W HFD group of rats compared to the control group, a moderate to strong positive
correlation between lobular fat content and lobular size was found, with the strength of
this correlation increasing from mice to human samples. These findings are consistent with
previously reported results at the lobule level [32, 67] and align with clinically observed
liver enlargement in human subjects with liver steatosis [68, 15].

4.4 Zonated Expression of Cytochrome P450 Isoforms

Utilizing the presented image analysis pipeline, the expression patterns of four major
CYP isoforms and GS were quantified. These CYP isoforms are heavily involved in drug
metabolism and have been subject to pharmacokinetic studies. It has been well established
that there are considerable inter-species differences in the expression of these proteins in
the liver. However, little emphasis has been laid on studying zonated expression patterns.
One study investigated the panlobular expression of CYP3A4 in adult minipigs with the
reported pericentral to mid-zonal expression observed in humans [74]. We found comparable
expression patterns for CYP2E1, but contrastingly, CYP1A2, CYP2D6, and CYP3A4
showed considerable interspecies differences in terms of the expression pattern, as observed
in this study. Additionally, we found slight relative decreases within the protein expression
patterns across the control and steatotic groups. However, the normalization of the protein
signal does not allow for a quantitative comparison of absolute protein expression between
species or groups. [2] did not find significant differences in protein expression between the
studied CYP isoforms 3A4, 1A2, 2D6, and 2E1, which indicates that the zonation pattern
may not be altered. However, they reported decreased enzymatic activity for CYP3A,
and CYP1A and increased activity for CYP2E1. Analyzing the protein signal without
normalizing it to the maximum intensity on the slide may provide interesting insights into
the zonal up or down-regulation of CYPs in steatotic samples.

Understanding the species differences in zonated expression is crucial to confidently
transfer findings from pharmacologic studies in the animal model to the clinical situation.
Furthermore, this knowledge is vital for understanding zonated pharmacological liver
damage as observed for paracetamol overdose [7] and provides a foundation for data-driven
pharmacokinetic modeling of the liver lobules. As discussed in [1], a deeper understanding
of the species-specific features of drug metabolism, including differences and similarities in
CYP patterns, will facilitate more accurate predictions of therapeutic efficacy and toxicity
according to species. This knowledge can also inform the development of safer and more
effective therapeutic plans. Furthermore, it may have a significant impact on drug testing
and preclinical drug development.
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5 Outlook

Future work will focus on enhancing the steatosis detection pipeline by systematically
annotating additional training data, particularly to improve the model’s performance in
detecting smaller steatosis droplets and microsteatosis patches. Since the current droplet
segmentation relies on instance segmentation, exploring alternative models such as Mask
R-CNN [35] may yield promising results. Mask R-CNN could enhance the segmentation of
overlapping instances and potentially reduce the need for manual postprocessing routines
that require fine-tuning.

The image analysis pipeline has successfully achieved lobule segmentation in both
normal and steatotic immunostained liver WSIs. Because the segmentation algorithm
relies on protein signals with monotonically increasing expression along the periportal-
perivenous axis, this approach could be adapted for other data sources, such as multi-channel
fluorescence images or spatial transcriptomics. Expanding the pipeline to accommodate
different imaging modalities would broaden its applicability and validate its effectiveness
across various types of data. Additionally, it could facilitate the integration of multimodal
data, including transcriptomics and proteomics.

Future work could also extend the pipeline to include additional histological readouts
relevant to the evaluation of liver biopsies and histologies, such as necrosis, fibrosis, cellular
ballooning, and inflammation, using H&E slides or specific stainings for each readout.

In this thesis, we examined the impact of steatosis on zonation patterns and lobular
geometries. Similarly, the effects of other pathophysiological conditions or surgical inter-
ventions could be studied to understand the potential zonated up- or down-regulation of
protein expression.

While the segmentation of lobules in 2D planes provided valuable insights into their
geometric characteristics, this approach has limitations. The sectioning plane may not
always be perfectly perpendicular to the lobules, which could affect the accuracy of the
analysis. To address this, future work could apply the lobule segmentation workflow to
larger stacks of adjacent slides, enabling the reconstruction of the full 3D structure of
entire lobules. This would offer a more comprehensive understanding of their longitudinal
geometry, which is crucial for interpreting cross-sectional data. Additionally, analyzing the
3D structure could help quantify the variability in lobule geometry and protein gradients
introduced by non-perpendicular sectioning planes. This would require the registration of
image stacks to extend the presented analysis from 2D to 3D.

The pipeline provided detailed insights into CYP isoform expression and macrosteatosis
distribution within lobules. Currently, this information is primarily descriptive. An
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important next step would be to leverage this data for quantitative modeling by integrating
it with computational models, such as lobular models [59, 26]. By incorporating realistic
geometries and protein gradients into these models, this work could advance the development
of more accurate simulations of spatially resolved liver metabolism and function. This
would facilitate the study of liver zonation effects on pharmacokinetics and liver toxicity in
silico.
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Supplementary material

S.1 Tables

Table S1: Descriptive statistics for lobular geometry by species

Species Attribute Unit n Median Q1 Q3 Min Max Mean SD SE
human area mm2 1074 0.530 0.158 1.174 0.001 10.652 0.966 1.357 0.029
mouse area mm2 1530 0.193 0.110 0.350 0.001 4.463 0.299 0.360 0.008
pig area mm2 698 0.638 0.303 1.008 0.001 3.789 0.718 0.573 0.027
rat area mm2 669 0.266 0.122 0.554 0.001 9.374 0.468 0.729 0.018
human compactness - 1074 0.605 0.518 0.675 0.177 0.880 0.592 0.122 0.018
mouse compactness - 1530 0.651 0.585 0.702 0.192 0.850 0.638 0.097 0.016
pig compactness - 698 0.620 0.552 0.679 0.199 0.809 0.613 0.097 0.023
rat compactness - 669 0.626 0.561 0.690 0.149 0.857 0.620 0.105 0.024
human min. b. radius mm 1074 0.559 0.309 0.830 0.033 3.889 0.637 0.473 0.019
mouse min. b. radius mm 1530 0.330 0.249 0.442 0.033 2.068 0.375 0.216 0.010
pig min. b. radius mm 698 0.581 0.405 0.770 0.033 1.737 0.583 0.285 0.022
rat min. b. radius mm 669 0.401 0.263 0.563 0.021 2.488 0.451 0.299 0.017
human perimeter mm 1074 3.365 1.841 5.091 0.157 23.206 3.966 3.200 0.121
mouse perimeter mm 1530 1.939 1.436 2.636 0.157 16.155 2.233 1.397 0.057
pig perimeter mm 698 3.561 2.403 4.695 0.157 11.024 3.562 1.823 0.135
rat perimeter mm 669 2.345 1.534 3.407 0.116 20.607 2.734 2.052 0.106

Table S2: Descriptive statistics for lobular geometry for steatotic samples by species and
groups

Species Group Attribute Unit n Median Q1 Q3 Min Max Mean SD
human Steatosis area mm2 810 0.554 0.162 1.446 0.001 24.909 1.293 2.323
mouse 2W HDF area mm2 1817 0.204 0.124 0.327 0.001 2.263 0.266 0.240
mouse 4W HDF area mm2 1951 0.228 0.132 0.360 0.000 4.838 0.295 0.287
rat 2W HDF area mm2 1427 0.303 0.162 0.532 0.001 15.098 0.438 0.607
rat 4W HDF area mm2 502 0.315 0.140 0.605 0.001 31.144 0.549 1.497
human Steatosis compactness - 810 0.615 0.535 0.683 0.161 0.913 0.601 0.123
mouse 2W HDF compactness - 1817 0.656 0.594 0.707 0.244 0.884 0.645 0.090
mouse 4W HDF compactness - 1951 0.646 0.584 0.703 0.248 0.866 0.639 0.091
rat 2W HDF compactness - 1427 0.635 0.567 0.692 0.233 0.851 0.626 0.096
rat 4W HDF compactness - 502 0.628 0.563 0.682 0.293 0.837 0.618 0.098
human Steatosis min. b. radius mm 810 0.562 0.323 0.916 0.033 4.900 0.714 0.619
mouse 2W HDF min. b. radius mm 1817 0.339 0.260 0.432 0.033 1.387 0.363 0.169
mouse 4W HDF min. b. radius mm 1951 0.361 0.271 0.454 0.021 1.978 0.382 0.183
rat 2W HDF min. b. radius mm 1427 0.417 0.304 0.555 0.033 3.498 0.453 0.252
rat 4W HDF min. b. radius mm 502 0.417 0.287 0.590 0.033 4.888 0.480 0.341
human Steatosis perimeter mm 810 3.349 1.824 5.566 0.157 42.275 4.430 4.349
mouse 2W HDF perimeter mm 1817 1.999 1.527 2.568 0.157 8.144 2.141 1.031
mouse 4W HDF perimeter mm 1951 2.096 1.592 2.703 0.099 14.123 2.263 1.148
rat 2W HDF perimeter mm 1427 2.455 1.775 3.305 0.157 28.112 2.720 1.672
rat 4W HDF perimeter mm 502 2.515 1.677 3.557 0.157 34.434 2.909 2.314

63



Table S3: Descriptive statistics for lobular geometry by subject in humans

Subject Attribute Unit n Median Q1 Q3 Min Max Mean SD
UKJ-19-010 area mm2 196 0.534 0.216 0.861 0.001 10.652 0.838 1.265
UKJ-19-026 area mm2 154 0.729 0.333 1.253 0.001 5.047 0.879 0.754
UKJ-19-033 area mm2 134 0.504 0.209 1.107 0.001 7.868 0.976 1.375
UKJ-19-036 area mm2 107 0.555 0.050 2.434 0.001 8.035 1.657 2.218
UKJ-19-041 area mm2 326 0.438 0.086 1.223 0.002 9.691 0.943 1.350
UKJ-19-049 area mm2 157 0.453 0.157 0.885 0.003 5.399 0.782 0.954
UKJ-19-010 compactness - 196 0.614 0.538 0.677 0.198 0.800 0.601 0.116
UKJ-19-026 compactness - 154 0.617 0.513 0.663 0.285 0.800 0.593 0.098
UKJ-19-033 compactness - 134 0.605 0.540 0.675 0.244 0.809 0.594 0.111
UKJ-19-036 compactness - 107 0.598 0.510 0.687 0.316 0.857 0.589 0.129
UKJ-19-041 compactness - 326 0.596 0.510 0.686 0.194 0.880 0.589 0.134
UKJ-19-049 compactness - 157 0.604 0.512 0.663 0.177 0.820 0.583 0.126
UKJ-19-010 min. b. radius mm 196 0.548 0.362 0.710 0.033 3.139 0.609 0.428
UKJ-19-026 min. b. radius mm 154 0.628 0.434 0.846 0.033 1.963 0.652 0.334
UKJ-19-033 min. b. radius mm 134 0.569 0.356 0.818 0.033 2.398 0.655 0.456
UKJ-19-036 min. b. radius mm 107 0.593 0.174 1.194 0.033 2.780 0.765 0.662
UKJ-19-041 min. b. radius mm 326 0.534 0.219 0.859 0.034 3.889 0.619 0.513
UKJ-19-049 min. b. radius mm 157 0.497 0.298 0.771 0.041 1.946 0.588 0.394
UKJ-19-010 perimeter mm 196 3.225 2.051 4.213 0.157 21.609 3.741 2.894
UKJ-19-026 perimeter mm 154 3.812 2.703 5.130 0.157 12.986 4.000 2.142
UKJ-19-033 perimeter mm 134 3.345 2.039 4.943 0.157 16.955 4.017 3.076
UKJ-19-036 perimeter mm 107 3.451 1.065 7.934 0.157 17.593 4.940 4.560
UKJ-19-041 perimeter mm 326 3.204 1.247 5.261 0.182 23.206 3.873 3.429
UKJ-19-049 perimeter mm 157 3.092 1.876 4.889 0.216 16.830 3.701 2.760

Table S4: Descriptive statistics for lobular geometry by subject in mice

Subject Attribute Unit n Median Q1 Q3 Min Max Mean SD
MNT-021 area mm2 307 0.207 0.113 0.356 0.001 2.834 0.301 0.336
MNT-022 area mm2 313 0.183 0.111 0.311 0.001 1.357 0.250 0.223
MNT-023 area mm2 265 0.198 0.113 0.346 0.002 4.463 0.300 0.374
MNT-024 area mm2 212 0.183 0.103 0.354 0.001 4.117 0.325 0.469
MNT-025 area mm2 275 0.187 0.103 0.328 0.001 1.924 0.262 0.262
MNT-026 area mm2 158 0.230 0.118 0.516 0.001 3.608 0.421 0.516
MNT-021 compactness - 307 0.644 0.577 0.696 0.276 0.850 0.630 0.102
MNT-022 compactness - 313 0.654 0.592 0.708 0.275 0.830 0.645 0.089
MNT-023 compactness - 265 0.653 0.589 0.708 0.249 0.809 0.640 0.097
MNT-024 compactness - 212 0.664 0.596 0.707 0.192 0.821 0.644 0.101
MNT-025 compactness - 275 0.649 0.592 0.698 0.348 0.825 0.638 0.092
MNT-026 compactness - 158 0.636 0.571 0.702 0.296 0.810 0.625 0.106
MNT-021 min. b. radius mm 307 0.340 0.250 0.445 0.033 1.532 0.380 0.210
MNT-022 min. b. radius mm 313 0.318 0.254 0.418 0.033 1.223 0.351 0.168
MNT-023 min. b. radius mm 265 0.335 0.262 0.447 0.034 2.068 0.380 0.218
MNT-024 min. b. radius mm 212 0.320 0.237 0.449 0.033 1.771 0.378 0.246
MNT-025 min. b. radius mm 275 0.325 0.242 0.411 0.033 1.262 0.352 0.184
MNT-026 min. b. radius mm 158 0.357 0.252 0.565 0.033 1.744 0.437 0.288
MNT-021 perimeter mm 307 1.979 1.454 2.713 0.157 10.911 2.273 1.371
MNT-022 perimeter mm 313 1.866 1.444 2.469 0.157 7.874 2.072 1.026
MNT-023 perimeter mm 265 1.989 1.441 2.711 0.182 15.014 2.243 1.402
MNT-024 perimeter mm 212 1.878 1.374 2.662 0.157 16.155 2.276 1.710
MNT-025 perimeter mm 275 1.907 1.385 2.477 0.157 7.046 2.089 1.131
MNT-026 perimeter mm 158 2.113 1.517 3.363 0.157 11.176 2.645 1.859
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Table S5: Descriptive statistics for lobular geometry by subject in rats

Subject Attribute Unit n Median Q1 Q3 Min Max Mean SD
NOR-021 area mm2 96 0.382 0.180 0.619 0.003 4.007 0.507 0.563
NOR-022 area mm2 94 0.230 0.108 0.522 0.002 9.374 0.461 1.007
NOR-023 area mm2 92 0.271 0.101 0.554 0.001 7.836 0.507 0.926
NOR-024 area mm2 116 0.215 0.112 0.513 0.003 6.144 0.531 0.904
NOR-025 area mm2 115 0.275 0.136 0.545 0.001 2.883 0.478 0.566
NOR-026 area mm2 156 0.272 0.142 0.546 0.001 1.953 0.369 0.334
NOR-021 compactness - 96 0.627 0.546 0.694 0.350 0.816 0.624 0.093
NOR-022 compactness - 94 0.605 0.524 0.683 0.308 0.809 0.604 0.111
NOR-023 compactness - 92 0.635 0.565 0.693 0.264 0.813 0.623 0.102
NOR-024 compactness - 116 0.634 0.570 0.689 0.149 0.800 0.620 0.118
NOR-025 compactness - 115 0.619 0.561 0.684 0.310 0.786 0.613 0.097
NOR-026 compactness - 156 0.637 0.567 0.691 0.187 0.857 0.628 0.104
NOR-021 min. b. radius mm 96 0.470 0.331 0.619 0.041 1.553 0.486 0.255
NOR-022 min. b. radius mm 94 0.363 0.246 0.578 0.034 2.488 0.433 0.320
NOR-023 min. b. radius mm 92 0.394 0.232 0.550 0.021 2.369 0.446 0.329
NOR-024 min. b. radius mm 116 0.352 0.254 0.538 0.041 2.242 0.471 0.391
NOR-025 min. b. radius mm 115 0.409 0.285 0.573 0.021 1.412 0.467 0.270
NOR-026 min. b. radius mm 156 0.411 0.277 0.538 0.033 1.121 0.415 0.217
NOR-021 perimeter mm 96 2.865 1.985 3.565 0.199 10.261 2.910 1.612
NOR-022 perimeter mm 94 2.230 1.424 3.461 0.182 18.507 2.636 2.241
NOR-023 perimeter mm 92 2.357 1.286 3.385 0.116 17.324 2.734 2.266
NOR-024 perimeter mm 116 2.047 1.454 3.217 0.216 20.607 2.890 2.822
NOR-025 perimeter mm 115 2.386 1.638 3.444 0.116 10.275 2.840 1.808
NOR-026 perimeter mm 156 2.388 1.674 3.283 0.157 8.192 2.493 1.402

Table S6: Descriptive statistics for lobular geometry by subject in pigs

Subject Attribute Unit n Median Q1 Q3 Min Max Mean SD
SSES2021 10 area mm2 180 0.546 0.241 0.967 0.001 3.329 0.664 0.547
SSES2021 12 area mm2 193 0.577 0.266 0.995 0.002 2.360 0.680 0.540
SSES2021 14 area mm2 219 0.708 0.360 1.084 0.001 2.826 0.808 0.609
SSES2021 9 area mm2 106 0.566 0.317 0.869 0.001 3.789 0.696 0.573
SSES2021 10 compactness - 180 0.609 0.536 0.680 0.333 0.809 0.608 0.103
SSES2021 12 compactness - 193 0.621 0.551 0.678 0.199 0.809 0.616 0.095
SSES2021 14 compactness - 219 0.630 0.560 0.679 0.273 0.809 0.617 0.094
SSES2021 9 compactness - 106 0.623 0.565 0.677 0.298 0.800 0.609 0.096
SSES2021 10 min. b. radius mm 180 0.554 0.384 0.757 0.033 1.737 0.557 0.280
SSES2021 12 min. b. radius mm 193 0.563 0.377 0.771 0.034 1.201 0.560 0.278
SSES2021 14 min. b. radius mm 219 0.625 0.451 0.796 0.033 1.472 0.620 0.293
SSES2021 9 min. b. radius mm 106 0.566 0.425 0.733 0.033 1.691 0.594 0.280
SSES2021 10 perimeter mm 180 3.384 2.317 4.764 0.157 10.466 3.440 1.811
SSES2021 12 perimeter mm 193 3.417 2.239 4.591 0.182 8.473 3.418 1.787
SSES2021 14 perimeter mm 219 3.849 2.643 4.789 0.157 8.919 3.779 1.862
SSES2021 9 perimeter mm 106 3.273 2.612 4.564 0.157 11.024 3.584 1.784
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Table S7: Descriptive statistics for lobular geometry by mouse lobes in Subject MNT-021

Lobe Attribute Unit n Median Q1 Q3 Min Max Mean SD
CL area mm2 80 0.197 0.096 0.291 0.001 1.847 0.247 0.265
LLL area mm2 96 0.232 0.120 0.401 0.002 2.834 0.358 0.428
ML area mm2 69 0.223 0.129 0.353 0.003 1.406 0.299 0.282
RL area mm2 62 0.182 0.111 0.330 0.001 1.809 0.287 0.294
CL compactness - 80 0.659 0.587 0.694 0.304 0.800 0.641 0.089
LLL compactness - 96 0.621 0.569 0.686 0.276 0.850 0.613 0.111
ML compactness - 69 0.663 0.595 0.715 0.393 0.799 0.653 0.088
RL compactness - 62 0.635 0.566 0.691 0.344 0.823 0.617 0.110
CL min. b. radius mm 80 0.332 0.236 0.397 0.033 1.313 0.343 0.187
LLL min. b. radius mm 96 0.345 0.257 0.524 0.034 1.532 0.415 0.243
ML min. b. radius mm 69 0.347 0.261 0.443 0.041 1.067 0.378 0.190
RL min. b. radius mm 62 0.322 0.251 0.442 0.033 0.984 0.374 0.196
CL perimeter mm 80 1.924 1.340 2.342 0.157 8.638 2.023 1.207
LLL perimeter mm 96 2.071 1.478 2.944 0.182 10.911 2.517 1.661
ML perimeter mm 69 1.979 1.568 2.602 0.233 6.382 2.245 1.171
RL perimeter mm 62 1.878 1.457 2.715 0.157 6.631 2.248 1.207

Table S8: Descriptive statistics for lobular geometry by mouse lobes in Subject MNT-022

Lobe Attribute Unit n Median Q1 Q3 Min Max Mean SD
CL area mm2 51 0.157 0.100 0.246 0.001 0.677 0.198 0.145
LLL area mm2 119 0.194 0.109 0.368 0.003 1.357 0.270 0.247
ML area mm2 86 0.180 0.111 0.278 0.001 0.783 0.228 0.172
RL area mm2 57 0.208 0.129 0.320 0.003 1.190 0.291 0.277
CL compactness - 51 0.655 0.601 0.694 0.452 0.798 0.646 0.073
LLL compactness - 119 0.655 0.594 0.716 0.275 0.830 0.646 0.095
ML compactness - 86 0.658 0.606 0.710 0.419 0.823 0.652 0.081
RL compactness - 57 0.641 0.573 0.690 0.391 0.795 0.629 0.097
CL min. b. radius mm 51 0.303 0.239 0.402 0.033 0.592 0.317 0.119
LLL min. b. radius mm 119 0.329 0.256 0.436 0.041 1.223 0.364 0.189
ML min. b. radius mm 86 0.311 0.256 0.384 0.033 0.801 0.337 0.141
RL min. b. radius mm 57 0.332 0.273 0.434 0.041 0.904 0.376 0.186
CL perimeter mm 51 1.773 1.397 2.326 0.157 3.656 1.846 0.725
LLL perimeter mm 119 1.979 1.427 2.600 0.199 7.874 2.149 1.152
ML perimeter mm 86 1.840 1.454 2.262 0.157 4.810 1.991 0.857
RL perimeter mm 57 1.989 1.558 2.537 0.233 5.071 2.238 1.158

Table S9: Descriptive statistics for lobular geometry by mouse lobes in Subject MNT-023

Lobe Attribute Unit n Median Q1 Q3 Min Max Mean SD
CL area mm2 51 0.157 0.100 0.246 0.001 0.677 0.198 0.145
LLL area mm2 119 0.194 0.109 0.368 0.003 1.357 0.270 0.247
ML area mm2 86 0.180 0.111 0.278 0.001 0.783 0.228 0.172
RL area mm2 57 0.208 0.129 0.320 0.003 1.190 0.291 0.277
CL compactness - 51 0.655 0.601 0.694 0.452 0.798 0.646 0.073
LLL compactness - 119 0.655 0.594 0.716 0.275 0.830 0.646 0.095
ML compactness - 86 0.658 0.606 0.710 0.419 0.823 0.652 0.081
RL compactness - 57 0.641 0.573 0.690 0.391 0.795 0.629 0.097
CL min. b. radius mm 51 0.303 0.239 0.402 0.033 0.592 0.317 0.119
LLL min. b. radius mm 119 0.329 0.256 0.436 0.041 1.223 0.364 0.189
ML min. b. radius mm 86 0.311 0.256 0.384 0.033 0.801 0.337 0.141
RL min. b. radius mm 57 0.332 0.273 0.434 0.041 0.904 0.376 0.186
CL perimeter mm 51 1.773 1.397 2.326 0.157 3.656 1.846 0.725
LLL perimeter mm 119 1.979 1.427 2.600 0.199 7.874 2.149 1.152
ML perimeter mm 86 1.840 1.454 2.262 0.157 4.810 1.991 0.857
RL perimeter mm 57 1.989 1.558 2.537 0.233 5.071 2.238 1.158
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Table S10: Descriptive statistics for lobular geometry by mouse lobes in Subject MNT-024

Lobe Attribute Unit n Median Q1 Q3 Min Max Mean SD
CL area mm2 32 0.175 0.087 0.249 0.003 0.454 0.181 0.119
LLL area mm2 83 0.165 0.105 0.294 0.003 2.305 0.254 0.312
ML area mm2 43 0.264 0.114 0.464 0.001 4.117 0.464 0.705
RL area mm2 54 0.236 0.104 0.465 0.001 2.536 0.410 0.516
CL compactness - 32 0.666 0.596 0.686 0.448 0.800 0.643 0.081
LLL compactness - 83 0.658 0.608 0.708 0.403 0.815 0.649 0.087
ML compactness - 43 0.648 0.572 0.690 0.192 0.821 0.624 0.117
RL compactness - 54 0.674 0.619 0.725 0.347 0.812 0.651 0.113
CL min. b. radius mm 32 0.315 0.239 0.350 0.041 0.521 0.301 0.111
LLL min. b. radius mm 83 0.307 0.237 0.406 0.041 1.040 0.341 0.168
ML min. b. radius mm 43 0.362 0.246 0.507 0.033 1.771 0.436 0.316
RL min. b. radius mm 54 0.357 0.239 0.504 0.033 1.495 0.434 0.309
CL perimeter mm 32 1.837 1.330 2.119 0.216 3.266 1.773 0.689
LLL perimeter mm 83 1.781 1.371 2.448 0.233 7.676 2.037 1.116
ML perimeter mm 43 2.105 1.513 3.097 0.157 16.155 2.759 2.566
RL perimeter mm 54 2.154 1.354 3.004 0.157 9.100 2.558 1.880

Table S11: Descriptive statistics for lobular geometry by mouse lobes in Subject MNT-025

Lobe Attribute Unit n Median Q1 Q3 Min Max Mean SD
CL area mm2 44 0.157 0.094 0.257 0.003 0.770 0.196 0.160
LLL area mm2 103 0.190 0.098 0.347 0.001 1.924 0.286 0.313
ML area mm2 74 0.221 0.129 0.342 0.003 1.455 0.301 0.277
RL area mm2 54 0.165 0.105 0.276 0.001 0.908 0.215 0.170
CL compactness - 44 0.641 0.573 0.705 0.398 0.825 0.636 0.094
LLL compactness - 103 0.643 0.571 0.689 0.353 0.821 0.624 0.099
ML compactness - 74 0.649 0.590 0.705 0.348 0.809 0.643 0.090
RL compactness - 54 0.671 0.622 0.708 0.478 0.800 0.659 0.071
CL min. b. radius mm 44 0.310 0.217 0.377 0.041 0.734 0.308 0.136
LLL min. b. radius mm 103 0.332 0.239 0.438 0.033 1.262 0.364 0.209
ML min. b. radius mm 74 0.341 0.270 0.435 0.041 1.069 0.381 0.197
RL min. b. radius mm 54 0.307 0.237 0.390 0.033 0.812 0.327 0.136
CL perimeter mm 44 1.895 1.302 2.260 0.216 4.238 1.817 0.815
LLL perimeter mm 103 1.941 1.371 2.572 0.157 7.046 2.181 1.300
ML perimeter mm 74 2.080 1.568 2.585 0.233 6.382 2.265 1.185
RL perimeter mm 54 1.783 1.449 2.274 0.157 4.745 1.894 0.815

Table S12: Descriptive statistics for lobular geometry by mouse lobes in Subject MNT-026

Lobe Attribute Unit n Median Q1 Q3 Min Max Mean SD
CL area mm2 11 0.238 0.082 0.570 0.030 0.948 0.349 0.331
LLL area mm2 67 0.236 0.135 0.489 0.001 2.414 0.416 0.484
ML area mm2 43 0.230 0.137 0.566 0.003 3.608 0.477 0.641
RL area mm2 37 0.206 0.089 0.408 0.003 1.815 0.387 0.440
CL compactness - 11 0.605 0.548 0.711 0.473 0.757 0.625 0.094
LLL compactness - 67 0.644 0.576 0.694 0.296 0.797 0.626 0.104
ML compactness - 43 0.635 0.586 0.709 0.301 0.810 0.627 0.118
RL compactness - 37 0.611 0.557 0.694 0.414 0.806 0.620 0.097
CL min. b. radius mm 11 0.344 0.202 0.657 0.130 0.898 0.421 0.266
LLL min. b. radius mm 67 0.365 0.260 0.540 0.033 1.504 0.442 0.275
ML min. b. radius mm 43 0.359 0.273 0.573 0.041 1.744 0.461 0.333
RL min. b. radius mm 37 0.322 0.240 0.471 0.041 1.033 0.406 0.258
CL perimeter mm 11 1.986 1.195 3.699 0.804 5.020 2.400 1.447
LLL perimeter mm 67 2.171 1.525 3.203 0.157 8.771 2.664 1.785
ML perimeter mm 43 1.996 1.558 3.457 0.216 11.176 2.826 2.215
RL perimeter mm 37 2.061 1.517 2.937 0.216 6.580 2.473 1.605
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Table S13: Descriptive statistics for macrosteatosis droplet geometry by species and
groups

Species Group Attribute Unit n Median Q1 Q3 Min Max Mean SD
human Steatosis area µm2 303109 209.8 102.4 400.6 36.3 1790.2 292.7 257.8
mouse 2W HDF area µm2 152116 71.9 50.8 109.8 36.3 1434.6 89.8 56.0
mouse 4W HDF area µm2 334879 104.1 63.2 182.5 36.3 1236.8 139.4 105.8
rat 2W HDF area µm2 782376 116.0 75.2 162.3 36.3 1481.7 124.5 62.4
rat 4W HDF area µm2 418463 246.5 131.7 375.0 36.3 1487.5 265.9 159.1
human Steatosis min. b. radius µm 303109 9.5 6.7 12.9 3.7 25.0 10.2 4.4
mouse 2W HDF min. b. radius µm 152116 5.6 4.7 6.9 3.7 25.0 6.0 1.9
mouse 4W HDF min. b. radius µm 334879 6.8 5.3 9.1 3.7 25.0 7.5 2.8
rat 2W HDF min. b. radius µm 782376 7.0 5.7 8.2 2.9 25.0 7.1 1.8
rat 4W HDF min. b. radius µm 418463 10.4 7.6 12.7 3.7 25.0 10.3 3.2
human Steatosis perimeter µm 303109 56.1 39.3 77.3 22.3 262.6 60.6 26.4
mouse 2W HDF perimeter µm 152116 32.5 27.4 40.6 22.3 166.2 35.3 10.4
mouse 4W HDF perimeter µm 334879 39.8 30.6 52.4 22.3 155.0 43.2 15.6
rat 2W HDF perimeter µm 782376 41.3 33.6 48.8 22.3 157.7 41.7 10.6
rat 4W HDF perimeter µm 418463 60.9 44.7 74.7 22.3 173.4 60.1 19.2

Table S14: Descriptive statistics for macrosteatosis droplet density and surface coverage
per WSI

Species Group Attribute Unit n Median Q1 Q3 Min Max Mean SD
human Steatosis Av. droplet density mm−2 6 294.2 225.4 305.4 199.6 313.4 268.8 52.6
mouse 2W HDF Av. droplet density mm−2 28 212.4 89.7 385.2 7.8 678.4 264.7 200.9
mouse 4W HDF Av. droplet density mm−2 22 563.7 324.5 734.2 127.0 845.7 529.4 228.5
rat 2W HDF Av. droplet density mm−2 13 1053.7 531.8 1589.3 62.8 1826.4 1028.6 625.4
rat 4W HDF Av. droplet density mm−2 6 1458.7 1375.9 1535.6 1271.0 1576.3 1445.7 118.2
human Steatosis Surface coverage % 6 7.7 7.3 8.6 5.1 10.6 7.8 1.8
mouse 2W HDF Surface coverage % 28 1.6 0.7 3.2 0.1 7.6 2.4 2.1
mouse 4W HDF Surface coverage % 22 8.3 3.9 10.5 0.9 14.6 7.4 4.3
rat 2W HDF Surface coverage % 13 11.2 6.4 19.1 1.2 23.8 12.5 8.4
rat 4W HDF Surface coverage % 6 42.0 38.7 42.9 24.7 43.6 38.8 7.2

Table S15: Segmentation validation metrics on the Test dataset

Grouped by Group Species subset n DSC (SemS) PQ DSC (InS) NSD
species All all 15 0.889 0.812 0.923 0.784
species mouse all 8 0.837 0.714 0.866 0.7
species rat all 4 0.943 0.906 0.991 0.857
species human all 3 0.956 0.949 0.986 0.908
diet 2W HFD mouse 6 0.795 0.636 0.824 0.634
diet 4W HFD mouse 2 0.962 0.947 0.993 0.896
diet 2W HFD rat 2 0.932 0.878 0.994 0.843
diet 4W HFD rat 2 0.954 0.935 0.987 0.872
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