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Lebenswissenschaftliche Fakultät
Institut für Biologie

Bachelorarbeit

Zum Erwerb des akademischen Grades Bachelor of Science

A physiological-based pharmacokinetic (PBPK) model of the sulfonylurea glimepiride

Ein physiologisch-basiertes pharmakokinetisches (PBPK) Modell des Sulfonylharnstoffs
Glimepirid

vorgelegt von

Michelle Elias

Matrikelnummer: 604500

E-Mail: elias.michelle@web.de

Geburtsdatum und -ort: 05.11.2001 in Berlin

Arbeitsgruppe: Systems Medicine of the Liver

Berlin, 2025-04-30
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English

Glimepiride is a second-generation sulfonylurea used in the management of type 2 diabetes.
Its pharmacokinetics exhibit significant inter-individual variability influenced by patient-specific
factors, potentially affecting therapeutic outcomes. This study developed a physiologically based
pharmacokinetic (PBPK) model to systematically evaluate how these factors affect glimepiride
disposition. Using curated data from 19 clinical studies, a modular SBML-based model was
developed with submodels for intestinal absorption, hepatic metabolism, and renal excretion.
Parameter optimization achieved good alignment with observed pharmacokinetic profiles. The
validated model reproduced dose-proportional kinetics within the therapeutic range and pre-
dicted differential impacts of physiological variability. Renal impairment primarily affected
metabolite clearance, while hepatic dysfunction led to increased glimepiride exposure via reduced
cytochrome P450 2C9 (CYP2C9)-mediated metabolism. Bodyweight and CYP2C9 variants also
influenced drug disposition. Despite CYP2C9 genotypes significantly affected individual phar-
macokinetics, population-level differences across biogeographical groups were modest. While
some limitations remain, particularly regarding data availability in severe organ dysfunction,
the model offers mechanistic insights into pharmacokinetic variability. It provides a basis for
individualized dosing strategies and supports the ongoing development of clinically applicable
decision support tools for type 2 diabetes therapy.

Deutsch

Glimepirid ist ein Sulfonylharnstoff der zweiten Generation zur Behandlung von Typ-2-Diabetes.
Die Pharmakokinetik zeigt eine ausgeprägte interindividuelle Variabilität, die durch patien-
tenspezifische Faktoren beeinflusst wird und den Therapieerfolg beeinträchtigen kann. Ziel
dieser Arbeit war die Entwicklung eines integrierten computergestützten Ansatzes zur system-
atischen Analyse dieser Variabilität mit Hilfe eines physiologisch basierten pharmakokinetis-
chen (PBPK) Modells. Basierend auf Daten aus 19 klinischen Studien wurde ein modulares,
SBML-basiertes Modell mit Teilmodellen für intestinale Absorption, hepatische Metabolisierung
und renale Elimination entwickelt. Die Parameteroptimierung zeigte eine gute Übereinstim-
mung mit beobachteten Pharmakokinetik-Profilen. Das validierte Modell konnte dosispropor-
tionale Kinetiken im therapeutischen Bereich realistisch abbilden und zeigte differenzielle Ef-
fekte physiologischer Variabilität auf die Glimepirid-Exposition. Während sich Nierenfunk-
tionsstörungen vor allem auf die Metabolitenausscheidung auswirkten, führten Leberfunktion-
sstörungen zu erhöhten Glimepirid-Plasmakonzentrationen infolge reduzierter Cytochrom P450
2C9 (CYP2C9)-vermittelter Metabolisierung. Körpergewicht und CYP2C9-Genvarianten bee-
influssten zusätzlich die Pharmakokinetik. Während die CYP2C9-Genotypen die individuelle
Pharmakokinetik erheblich beeinflussten, waren die Unterschiede auf Bevölkerungsebene zwis-
chen den biogeografischen Gruppen gering. Obwohl in bestimmten Bereichen, insbesondere bei
schwerer Organfunktionsstörung, noch Datenlücken bestehen, liefert das Modell wertvolle mech-
anistische Einblicke in die Ursachen pharmakokinetischer Variabilität. Es bildet die Grundlage
für personalisierte Dosierungsstrategien und eröffnet Perspektiven für die Entwicklung klinisch
nutzbarer entscheidungsunterstützender Systeme in der Diabetestherapie.
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1 Introduction

Glimepiride is a second-generation sulfonylurea widely used in the management of type 2 dia-
betes mellitus [1, 2]. It acts primarily by stimulating insulin secretion from pancreatic β-cells,
thereby reducing blood glucose levels [3]. With favorable pharmacokinetic properties and an
established safety profile, glimepiride represents a significant therapeutic option across diverse
patient populations [4].

1.1 Diabetes mellitus

Diabetes mellitus encompasses a group of metabolic disorders characterized by persistent hyper-
glycemia resulting from defects in insulin secretion, insulin action, or both. The classification
includes type 1 diabetes (T1DM), type 2 diabetes (T2DM), gestational diabetes, and specific
types associated with genetic defects or pancreatic diseases. T2DM represents approximately
90% of all diabetes cases globally [5]. The prevalence of diabetes continues to increase and
presents substantial health and economic challenges. As of 2021, an estimated 537 million in-
dividuals were affected worldwide, with projections indicating an increase to 783 million by
2045. This trend correlates with an aging population, urbanization, lifestyle modifications, and
increasing obesity [5, 6].
T1DM results from autoimmune destruction of pancreatic β-cells, causing absolute insulin de-
ficiency. While typically diagnosed in childhood or adolescence, onset can occur at any age,
characterized by acute symptoms including polyuria, polydipsia, and weight loss. Management
requires lifelong insulin therapy to maintain glycemic control and prevent complications [5, 7].
T2DM is characterized by progressive β-cell dysfunction and insulin resistance, leading to im-
paired glucose homeostasis. This condition correlates strongly with modifiable risk factors in-
cluding obesity and sedentary behavior, alongside genetic predisposition. Chronic hyperglycemia
in T2DM leads to microvascular complications (retinopathy, nephropathy) and macrovascular
events (cardiovascular disease), underscoring the importance of early intervention [4, 5, 7].

1.2 Blood glucose regulation

Blood glucose homeostasis maintains plasma glucose within a narrow physiological range (4.4–
6.1 mM or 80–110 mg/dL), ensuring adequate cellular energy while preventing hypo- and hy-
perglycemia. This regulation occurs through coordinated actions of the pancreas, liver, adipose
tissue, and skeletal muscle [8, 9].
The pancreatic islets of Langerhans contain insulin-secreting β-cells and glucagon-secreting α-
cells that respond to glycemic fluctuations. Postprandial hyperglycemia stimulates insulin re-
lease, facilitating glucose uptake in insulin-sensitive tissues via GLUT4 transporters while in-
hibiting hepatic glucose production [9–11].
During fasting or hypoglycemia, pancreatic α-cells secrete glucagon, activating hepatic glyco-
genolysis and gluconeogenesis to restore euglycemia. The liver serves as the primary glucose
reservoir, storing excess glucose as glycogen during the fed state and mobilizing these stores
during fasting periods to maintain glucose supply to glucose-dependent tissues [8, 10, 12].

1.3 Sulfonylureas

Sulfonylureas are a widely prescribed class of oral anti-diabetic agents used in T2DM manage-
ment, particularly when metformin monotherapy, a first-line treatment that improves insulin
sensitivity and reduces hepatic glucose production, fails to achieve glycemic targets [5]. Their
efficacy depends on the presence of functional pancreatic β-cells, making them most suitable for
early to mid-stage T2DM [5, 13].
Sulfonylureas stimulate insulin secretion by inhibiting ATP-sensitive potassium (K-ATP) chan-
nels in β-cells. Binding to the sulfonylurea receptor 1 (SUR1) subunit blocks potassium efflux,
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inducing membrane depolarization, activation of voltage-gated calcium channels, elevation of
intracellular calcium, and subsequent insulin exocytosis [3, 14].
These agents are categorized into two generations based on potency and pharmacokinetic pro-
files. First-generation compounds (e.g. tolbutamide, chlorpropamide) exhibit lower potency and
shorter half-lives, necessitating frequent administration. Second-generation agents (e.g. gliben-
clamide, gliclazide, glimepiride, glipizide) demonstrate enhanced potency, extended half-lives,
and reduced dosing requirements [13, 14].
Sulfonylureas reduce HbA1c by 1–2% on average but present distinct adverse effect profiles.
Hypoglycemia remains the primary concern due to glucose-independent insulin secretion. Ad-
ditional adverse effects include weight gain resulting from enhanced insulin-mediated glucose
utilization in the adipose tissue. Concerns regarding cardiovascular safety stem from potential
non-selective binding to cardiac K-ATP channels, though newer agents demonstrate improved
pancreatic selectivity with reduced off-target effects [5, 13, 15].

1.4 Glimepiride

Glimepiride is traditionally classified as a second-generation sulfonylurea [2, 16]; however, more
recent literature also refers to it as a third-generation agent due to its enhanced receptor binding
affinity and distinct pharmacokinetic properties [17]. The chemical structure of glimepiride,
which contributes to its distinct pharmacokinetic and pharmacodynamic properties, is shown in
Fig. 1.

Figure 1: Chemical structure of glimepiride. The molecular formula of glimepiride is C24H34N4O5S, with a
molecular weight of 490.62 Da. It is characterized by its lipophilicity, which facilitates stronger interactions with
cell membranes and intracellular targets [16, 18].

Glimepiride shares the fundamental mechanism of action with other sulfonylureas but exhibits
distinct binding characteristics at SUR1 receptors. It demonstrates greater potency than most
sulfonylureas while requiring lower receptor occupancy, resulting in efficient insulin secretion with
potentially reduced hypoglycemic risk [1, 16]. These pharmacological advantages contribute to
its clinical utility in long-term T2DM management [2].

Glimepiride pharmacokinetics

The key pharmacokinetic characteristics of glimepiride, encompassing absorption, distribution,
metabolism, and elimination, are summarized in Fig. 2.

Absorption: Following oral administration, glimepiride demonstrates rapid absorption with
peak plasma concentrations (Tmax) occurring at 2.4–3.7 hours post-dose. The drug exhibits
nearly complete bioavailability (99.7%), indicating efficient absorption from the gastrointestinal
tract. Absorption proceeds independently of food intake [2, 19].

Distribution: Glimepiride has a small volume of distribution (8.8 L), indicating limited tissue
distribution. Glimepiride exhibits high plasma protein binding (99.4%), primarily to albumin,
contributing to sustained plasma concentrations and extended pharmacological activity [2, 19].
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Figure 2: Glimepiride pharmacokinetics. Rapid absorption, high plasma protein binding (99.4%), CYP2C9-
mediated metabolism, and excretion as metabolites via urine (60%) and feces (40%).

Metabolism: Glimepiride undergoes extensive hepatic metabolism, predominantly via CYP-
2C9, yielding two metabolites: the pharmacologically active M1 (hydroxy-glimepiride), retain-
ing approximately 30% of parent compound activity, and the inactive M2 (carboxy-glimepiride).
The partial activity of M1 prolongs the glucose-lowering effects of glimepiride beyond its plasma
half-life [2, 20].

Elimination: Glimepiride is extensively metabolized prior to excretion, with no parent drug
detectable in the urine. Approximately 60% of the metabolites are excreted renally, and about
40% through feces. While traces of glimepiride have been reported in feces in the FDA report,
the presence of the parent compound has been considered negligible [20]. The elimination half-
life ranges from 5–8 hours, though the pharmacological activity is extended by the active M1
metabolite, supporting once-daily dosing regimens [1, 16, 20]. The mechanisms underlying fecal
elimination remain incompletely characterized but appear to involve non-biliary pathways [2,
20].

Glimepiride pharmacodynamics

Glimepiride’s primary pharmacodynamic effect involves stimulation of insulin secretion from
pancreatic β-cells through binding to the SUR1 subunit of K-ATP channels, resulting in channel
closure, membrane depolarization, calcium influx, and insulin exocytosis [1, 3]. These mecha-
nisms are illustrated in Fig. 3.
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Figure 3: Glimepiride pharmacodynamics. A) Glimepiride binds to the sulfonylurea receptor 1 subunit of
the K-ATP channel in pancreatic β-cells, leading to potassium (K+) channel closure, membrane depolarization,
and calcium (Ca2+) influx through voltage-dependent calcium channels (VDCCs). This cascade triggers insulin
exocytosis from secretory vesicles. B) The released insulin promotes glucose homeostasis by stimulating glucose
uptake in peripheral tissues (primarily skeletal muscle and adipose tissue) and enhancing glucose uptake hepatic
glycogen synthesis, while suppressing gluconeogenesis and glycogenolysis.

Glimepiride’s receptor-binding specificity and lipophilic nature provide high selectivity for SUR1,
reducing off-target interactions with cardiac K-ATP channels. This selectivity mitigates cardio-
vascular risks often associated with sulfonylureas. While maintaining the typical HbA1c-lowering
efficacy of sulfonylureas, glimepiride demonstrates a more favorable profile with regards to weight
gain and hypoglycemic incidents compared to earlier agents in this class [1, 2, 16, 19].

1.5 Pharmacokinetic variability

The pharmacokinetic profile of glimepiride demonstrates significant inter-individual variability
influenced by physiological, pathological, and genetic factors that affect drug disposition and
response across diverse patient populations.

1.5.1 Hepatic and renal impairment

The pharmacokinetics and pharmacodynamics of glimepiride are significantly influenced by hep-
atic and renal function, as these organs are critical for its metabolism and excretion [2, 20].
T2DM-associated comorbidities, particularly diabetic nephropathy and steatohepatitis, modify
glimepiride pharmacokinetics and increase the risk of adverse effects [4, 5]. Understanding these
pharmacokinetic changes is essential to optimize glimepiride therapy and minimize risks in these
vulnerable populations [5]. The classification of hepatic and renal impairment is summarized in
Fig. 4.
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Figure 4: Degrees of hepatic and renal impairment. A) Hepatic impairment is assessed using the Child-
Turcotte-Pugh (CTP) score, which evaluates liver function based on clinical and laboratory markers [21, 22]. B)
Renal impairment is evaluated using the glomerular filtration rate (GFR), with reduced GFR corresponding to
diminished renal clearance. Both impairments significantly affect glimepiride’s pharmacokinetics [23, 24].

Renal impairment Renal dysfunction influences the pharmacokinetics of glimepiride by al-
tering the clearance of its metabolites M1 and M2. Studies indicate that as renal function
declines, the renal clearance of these metabolites decreases substantially, leading to their ac-
cumulation in plasma [25, 26]. This effect is particularly evident in patients with severe renal
impairment (CLcr <20 mL/min), where the accumulation of M1 may contribute to prolonged
hypoglycemia due to its residual pharmacologic activity. An increase in total drug clearance
has also been observed in patients with renal dysfunction. Rosenkranz et al. [26] speculated
that this may be attributed to reduced plasma protein binding, particularly due to decreased
albumin levels commonly seen in renal impairment.

Hepatic impairment Hepatic metabolism is critical for the clearance of glimepiride, but
available evidence suggests that mild to moderate hepatic impairment has minimal impact on
its pharmacokinetics. Both FDA data [20] and studies by Rosenkranz et al. [25, 26] indicate that
glimepiride’s metabolic clearance remains largely unaltered in patients with mild to moderate
liver dysfunction, with pharmacokinetic profiles comparable to those of healthy individuals.
However, the available data of the effect of hepatic impairment on glimepiride pharmacokinetics
is very limited [25, 26].
Clinical management in mild to moderate hepatic impairment permits glimepiride adminis-
tration with appropriate monitoring protocols for glycemic control and liver function [20, 25].
Severe hepatic dysfunction, however, poses significant safety concerns due to potential alter-
ations in CYP2C9 activity, which may impair glimepiride metabolism and elevate the risk of
hypoglycemia [2, 20].

1.5.2 Bodyweight and obesity

T2DM demonstrates strong association with obesity, with elevated body mass index observed in
a majority of patients at diagnosis. Physiological alterations accompanying obesity potentially
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affect drug pharmacokinetics through modified volume of distribution, protein binding, and
clearance pathways [27].
Studies investigating the impact of bodyweight on glimepiride pharmacokinetics have generally
shown no clinically significant differences between normal-weight and obese individuals when
pharmacokinetic parameters are normalized to body surface area [27]. However, absolute Cmax

values tend to be lower in individuals with higher bodyweight, reflecting an increased volume of
distribution. Additionally, obese subjects exhibit increased urinary excretion of the metabolites
M1 and M2. Although these differences are considered pharmacologically not relevant due to
the low activity of the metabolites, the presence of measurable changes suggests a potential
influence of bodyweight on drug disposition.
While clinical dose adjustments based solely on bodyweight are not recommended, incorporating
bodyweight as a covariate in PBPK models is essential for capturing interindividual variability
and optimizing predictions for long-term therapy across diverse patient groups.

1.5.3 CYP2C9 and genetic variants

Cytochrome P450 2C9 (CYP2C9) is the primary hepatic enzyme involved in the oxidative
metabolism of glimepiride. CYP2C9 first converts glimepiride to M1, which retains approx-
imately 30% of the parent compound’s glucose-lowering activity. Subsequently, cytosolic en-
zymes metabolize M1 to the inactive metabolite M2 [20]. These metabolic pathways determine
the clearance, efficacy, and safety profile of glimepiride [28–31]. In individuals with reduced-
function CYP2C9 alleles, prolonged retention of the parent compound may enhance both ther-
apeutic effects and adverse outcomes, especially hypoglycemia [28, 30].
Genetic polymorphisms in CYP2C9 significantly contribute to inter-individual variability in
glimepiride metabolism. Among the identified CYP2C9 allelic variants [32, 33], *2 and *3 are
most extensively characterized in glimepiride therapy. Tab. 1 details the molecular characteris-
tics of these key variants. Both exhibit reduced enzymatic activity compared to the wild-type
(*1). The Arg144Cys substitution in *2 alters substrate binding, while the Ile359Leu substi-
tution in *3 decreases catalytic efficiency. Clinically, *1/*3 individuals demonstrate approxi-
mately 2.5-fold increased glimepiride exposure (AUC) and 60% prolonged half-life compared to
*1/*1 [28–30]. *2 carriers show elevated systemic exposure, though typically less pronounced
than *3 carriers.
Several rare CYP2C9 variants have also been identified beyond the well-characterized *2 and *3
alleles. These include *18 (p.D397A, rs72558193), *35 (p.R125H, rs72558189), *61 (p.N457S,
rs202201137), and *68 (splicing defect, rs542577750) [34–37]. These rare alleles contain amino
acid substitutions seen in *2 or *3, along with additional mutations that may independently
influence enzymatic function [32].
While these variants are considered rare in most populations, emerging evidence suggests that
they may still contribute to interindividual variability in drug metabolism. For example, *35
has been associated with a complete loss of enzymatic function [35], and *61 with significantly
reduced activity [36]. The functional impact of *18 and *68 remains uncertain [34, 37]. Despite
their rarity, these variants can potentially contribute to unexplained variability in glimepiride
metabolism.

Table 1: Information about CYP2C9 genetic variants. Data from PharmGKB CYP2C9 information
tables [32].

Category *1 *2 *3
Nucleotide change (PharmVar) Unchanged 3608C>T 42614A>C
Effect on protein (NP 000762.2) Unchanged p.R144C (Arg144Cys) p.I359L (Ile359Leu)
Position at NC 000010.11 (GRCh38.p2) Reference g.94942290C>T g.94981296A>C
Position at NG 008385.2 (RefSeqGene) Reference g.9133C>T g.48139A>C
rsID Reference rs1799853 rs1057910
Function impact Normal function Decreased function No function
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■ *1 87.1 91.2 77.2 91.5 79.3 86.3 78.2 95.5 72.6

■ *2 2.2 3.3 11.4 0.2 12.7 7.6 13.0 2.9 1.3

■ *3 1.4 3.0 11.0 3.8 7.6 4.0 8.3 1.6 1.1

■ Other 9.3 2.5 0.4 4.5 0.4 2.1 0.6 0.0 25.0

Figure 5: Distribution of main CYP2C9 allele frequencies across different biogeographical popula-
tions. Data were obtained from PharmGKB CYP2C9 information tables [32].

Extrapolation from common to rare variant function requires caution [28, 29, 38]. Clinically,
pharmacogenetic testing for known variants combined with appropriate dose adjustments may
reduce hypoglycemia risk and other adverse events, particularly in populations with higher
frequencies of reduced-function alleles [28–31, 39].
Allele frequencies for *2 and *3 vary across biogeographical groups, as shown in Fig. 5. The
prevalence of *3 is significantly higher in European and Central/South Asian populations com-
pared to East Asian or Sub-Saharan African cohorts. Carriers of reduced-function alleles (par-
ticularly *2/*3 or *3/*3 genotypes) may require lower initial glimepiride doses to minimize
hypoglycemia risk [20, 28, 39]. Genotype- and ethnicity-informed personalized dosing strategies
may therefore optimize both efficacy and safety of glimepiride therapy.

1.6 Physiologically based pharmacokinetic model

Physiologically based pharmacokinetic (PBPK) models are computational frameworks that de-
scribe the absorption, distribution, metabolism, and excretion of drugs in the body through
mechanistic approaches. These models integrate physiological parameters (organ volumes, blood
flow rates) with drug-specific properties (solubility, permeability, binding characteristics) to pre-
dict drug concentrations in tissues and plasma over time. By simulating drug behavior across
diverse populations – including those with comorbidities like obesity, genetic variations, or al-
tered physiological states – PBPK models have become essential tools in preclinical and clinical
drug development, regulatory decision-making, and personalized medicine [40–42].
PBPK models are constructed using compartments that represent anatomical and physiolog-
ical units of the human body (liver, kidney, blood plasma) interconnected via blood flow to
replicate real-life drug distribution. Physiological parameters such as organ perfusion rates
and metabolic enzyme expression levels, along with drug-specific properties such as molecular
weight, lipophilicity, solubility, and pKa, form the foundation of these models. The mathemat-
ical framework employs ordinary differential equations to describe concentration-time profiles
within each compartment, enabling quantitative predictions that extrapolate beyond observed
data to simulate complex scenarios like organ impairment or drug-drug interactions [41, 43].
These models serve multiple functions in pharmaceutical research and clinical practice. They
optimize dosing regimens by predicting safe and effective doses while accounting for population
variability through physiological and genetic factors, such as CYP2C9 polymorphisms that sig-
nificantly affect glimepiride metabolism [30]. Additionally, they support regulatory submissions
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by providing data for drug approval and labeling, particularly for special populations including
pediatric, geriatric, or individuals with renal impairment [40, 44].
The development of PBPK models is facilitated by specialized tools and data standards. Soft-
ware such as PK-Sim [45] and the Open Systems Pharmacology Suite [46] enables creation of
individualized pharmacokinetic models, while the Systems Biology Markup Language (SBML)
standardizes model exchange across platforms [47, 48]. Computational libraries like libRoadRun-
ner provide efficient simulation capabilities for SBML-compliant models, and databases such as
PK-DB offer curated pharmacokinetic data, enhancing predictive accuracy and reducing reliance
on de novo data generation [49, 50].
These models hold significant promise for reducing dependence on in vivo studies and advancing
personalized therapeutic approaches through simulation of complex physiological scenarios [41,
42].

1.7 Question, scope and hypotheses

The objective of this study is to investigate how patient-specific factors influence the pharma-
cokinetics of glimepiride. The research addresses the following questions:

I. How can a comprehensive pharmacokinetics database for glimepiride be constructed to
support PBPK model development and validation?

II. What insights can a whole-body physiologically based pharmacokinetic model provide into
the ADME processes of glimepiride, particularly regarding patient-specific factors?

III. How do renal and hepatic impairments, CYP2C9 genetic polymorphisms, and physiological
parameters such as obesity influence glimepiride’s pharmacokinetics?

To address these questions, a systematic investigation of factors driving variability in glimepiride
pharmacokinetics will be conducted. A comprehensive database integrating clinical, experimen-
tal, and genetic data will form the foundation for developing a PBPK model based on physio-
logical and biochemical parameters.
The research is guided by the following hypotheses:

Primary Hypothesis: Renal and hepatic impairments, along with CYP2C9 genetic polymor-
phisms, significantly impact glimepiride’s pharmacokinetics by altering systemic drug exposure
and clearance rates.
Secondary Hypothesis 1: A PBPK model incorporating physiological, biochemical, and
genetic variability can accurately simulate glimepiride pharmacokinetics under diverse clinical
conditions.
Secondary Hypothesis 2: Inclusion of organ impairment and genetic variation data in the
PBPK model improves predictive accuracy, facilitating personalized dosing strategies.

Through this approach, the study aims to develop a PBPK model capable of simulating glimepi-
ride pharmacokinetics across diverse patient populations, thereby advancing precision medicine
in the treatment of T2DM.
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2 Methods

This study followed a systematic approach encompassing five main steps: systematic literature
review to compile glimepiride pharmacokinetic data (Sec. 2.1); data curation (Sec. 2.2); PBPK
model development (Sec. 2.3); parameter optimization using clinical datasets (Sec. 2.4); and
calculation of pharmacokinetic parameters to assess the model across diverse patient populations
(Sec. 2.5).

2.1 Systematic literature research

A systematic literature search was conducted for studies reporting glimepiride pharmacokinetic
data. PubMed was searched using the keywords glimepiride AND pharmacokinetics, and the
PKPDAI database [51] was queried on 2024-08-30. Studies were selected based on the following
criteria:

• Inclusion criteria: Clinical trials involving healthy volunteers or patients with T2DM,
as well as studies investigating the effects of renal impairment, hepatic impairment, body-
weight variations, or CYP2C9 genotypes on glimepiride pharmacokinetics.

• Exclusion criteria: Studies involving pediatric populations, non-human subjects, or
insufficiently reported pharmacokinetic data.

The systematic review also included in vitro studies with essential kinetic parameters and
enzyme-specific data (particularly CYP2C9 activity) required for PBPK model development.

2.2 Data curation

Data from the selected literature were systematically curated and uploaded to the open pharma-
cokinetics database PK-DB [49]. Articles were examined for patient-specific information (age,
sex, comorbidities, concurrent medications, dosing regimens, and pharmacokinetic profiles). The
extracted data were curated following established pharmacokinetic curation protocols as outlined
by Grzegorzewski et al. [49].
Figure-based pharmacokinetic data were digitized using WebPlotDigitizer [52], while tabular
and textual data were reformatted according to standardized guidelines [49] to ensure uniformity
across datasets.
Data were curated across five key categories:

1. Groups: Patient cohorts with detailed characteristics (age, sex, height, weight, ethnicity)
and condition-specific descriptors (diabetes status, organ impairment, CYP2C9 genotype).

2. Individuals: Person-level data including demographics and clinical parameters, organized
consistently with group-level information.

3. Interventions: Administration details including route (oral/intravenous), dose, and tim-
ing protocols.

4. Time course data: Plasma and urine concentration profiles of glimepiride and its
metabolites, serving as the foundation for pharmacokinetic analysis.

5. Pharmacokinetic and pharmacodynamic parameters: Key metrics including Cmax,
Tmax, AUC, half-life, clearance values (CL/F, CLrenal, CLfecal), Vd, and F. Pharmacody-
namic parameters (blood glucose, insulin response) were included when available.

This dataset was used as the basis for PBPK model construction, calibration, and validation.
All curated data are accessible via PK-DB (https://pk-db.com) [49], ensuring transparency
and reproducibility of the study.
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2.3 Computational model

The PBPK model and tissue-specific submodels were developed using the Systems Biology
Markup Language (SBML) [47, 48]. Programming and visualization of the models were per-
formed using the sbmlutils [53] and cy3sbml [54] libraries. Numerical solutions for the ordinary
differential equations (ODEs) underlying the model were computed using sbmlsim [55], powered
by the high-performance SBML simulation engine libRoadRunner [50, 56].
The developed model comprises a whole-body framework with submodels for the intestine, liver,
and kidney to characterize glimepiride’s ADME processes. The model and all associated materi-
als (simulation scripts, parameters, and documentation) are publicly available in SBML format
under a CC-BY 4.0 license at https://github.com/matthiaskoenig/glimepiride-model,
version 0.6.1 [57].

Renal impairment The parameter frenal_function was used to model renal impairment, with
1.0 representing normal function and lower values indicating reduced capacity. Based on KDIGO
guidelines [24], and following the implementation approach of Stemmer-Mallol et al. [58], scaling
factors were assigned for mild (0.69), moderate (0.32), and severe impairment (0.19). This
parameter directly scales M1 and M2 metabolite excretion rates, simulating reduced elimination
through glomerular filtration and tubular processes in impaired kidneys.

Hepatic impairment Hepatic impairment was implemented via the fcirrhosis parameter,
ranging from 0.0 (normal function) to 1.0 (severe impairment). Values were mapped to the Child-
Turcotte-Pugh (CTP) classification: mild cirrhosis (Child-Pugh class A: 0.3–0.6), moderate
cirrhosis (Child-Pugh class B: 0.6–0.8), and severe cirrhosis (Child-Pugh class C: 0.8–1.0). This
parameter modifies the fraction of functional liver parenchyma and the amount of blood shunted
around the liver, reflecting the impact of liver dysfunction on drug clearance [21, 22, 59].

Tissue distribution Tissue-to-plasma partitioning was introduced via the parameters
ftissuegli and Kpgli describing the rate of tissue distribution and the tissue-plasma parti-
tion coefficient, respectively. These parameters were used identically for glimepiride and its
metabolites (ftissuem1 = ftissuem2 = ftissuegli), assuming similar distribution properties
while reducing model complexity.

Bodyweight effects The model incorporates bodyweight as a critical physiological parameter
that influences drug pharmacokinetics. Organ volumes, blood flows, and metabolic rates were
scaled according to allometric relationships with bodyweight.

CYP2C9 Variability in CYP2C9 activity due to genetic variants was modeled using allele-
specific scaling factors derived from in vitro data [60–62]. The analysis focused exclusively on
alleles ∗1, ∗2, and ∗3, as these represent the only variants that have been extensively character-
ized in clinical studies of glimepiride pharmacokinetics. For study simulations, fixed genotype-
specific values represented the combined activity of both alleles (Tab. 2). Genotype-specific
activities were calculated as the mean of the two constituent allele-specific scaling factors. An
extended list of CYP2C9 allele activities is provided in the supplementary material (Tab. 5),
but only ∗1-∗3 were considered for study simulations.
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Table 2: CYP2C9 allele- and genotype-specific activities. Relative enzymatic activities for common
CYP2C9 alleles and genotypes. Activities are normalized to the wild-type allele (*1) activity.

Allele Activity Genotype Activity

∗1 1.0 ∗1/∗1 1.0
∗2 0.68 ∗1/∗2 0.84
∗3 0.23 ∗1/∗3 0.62

∗3/∗3 0.23

Population-level analyses were performed using intrinsic clearance (CLint) data for diclofenac,
a reference CYP2C9 substrate [63]. The observed CLint distribution was characterised using a
lognormal function, which captures the inherent variability in enzymatic activity. For modelling
allele-specific effects, this distribution shape was retained while adjusting the scale parameter so
that each distribution has the mean activity value of the respective allele. This approach retained
the characteristic pattern of enzymatic variability while shifting the distribution according to
the altered allele function. Diplotype activities were calculated as the average contribution of
both alleles.
Simulations also incorporated published CYP2C9 genotype frequencies across nine biogeograph-
ical populations [32]. For each population, individual profiles were sampled according to their
specific allele frequency distributions, allowing generation of population-level enzymatic activity
profiles that reflected the genetic composition of each biogeographical group.
These genetic factors were implemented via the parameter fcyp2c9, which modulates the maximal
velocity (Vmax) of glimepiride conversion to M1. The Michaelis constant (GLI2M1Km gli) was
parameterized using literature values [28, 61, 64].

2.4 Parameter optimization

Parameter fitting minimized the discrepancy between experimental data and model predictions
by optimizing key parameters related to absorption, metabolism, and excretion processes.
The optimization utilized a combined dataset from clinical studies (involving only healthy sub-
jects under fasted conditions) across both single and multiple dose regimens. All parameters
were optimized simultaneously.
The cost function minimized the sum of weighted residuals across all time-course data, defined
as:

F (p⃗) = 0.5
∑

i,k

(wi,k · ri,k(p⃗))2

where the weights wi,k accounted for both the number of participants in each study nk and the
standard deviation σi,k of the measurements (wi,k = nk/σi,k).
Multiple optimization runs (n = 100) were performed using a local optimizer with different
initial parameter conditions to ensure convergence. The best-fit parameters (Tab. 4, Sec. 3.3)
were selected for the final model.

2.5 Pharmacokinetic parameters

Pharmacokinetic parameters for glimepiride and its metabolites M1 and M2 were derived from
plasma concentration-time profiles and urinary excretion data. The following parameters were
calculated for all three compounds:

• Maximum plasma concentration Cmax [mmol/L]: The peak concentration observed
in the plasma concentration-time profile.

• Time to maximum concentration Tmax [min]: The time at which Cmax occurs.
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• Area under the curve AUC∞ [mmol · min/L]: Calculated using the trapezoidal rule,
with extrapolation to infinity performed by linear interpolation of the terminal phase on
the log transformed data.

• Elimination half-life t1/2 [min]: Calculated from the elimination rate constant kel as:

t1/2 =
ln(2)

kel

where kel (min−1) was determined by linear regression in the logarithmic space of the
terminal decay phase.

For the parent compound glimepiride, the following additional parameters were calculated:

• Apparent clearance Cl/F [L min−1]: Calculated using the relationship:

Cl/F =
Dose

AUC∞

where Dose is the administered dose of glimepiride.

• Volume of distribution Vd/F [L]: Estimated as:

Vd

F
=

Cl/F

kel

For the metabolites M1 and M2, the following specific clearance parameters were calculated:

• Renal clearance (Clrenal) [L min−1]: Calculated as the ratio of the cumulative amount
excreted in urine (Aurine) to the AUC:

Clrenal =
Aurine

AUC∞

• Fecal clearance (Clfecal) [L min−1]: Calculated as the ratio of the cumulative amount
excreted in feces (Afeces) to the AUC:

Clfecal =
Afeces

AUC∞

• Apparent clearance (Cl/F ) [L min−1]: For metabolites, this was calculated based on
the parent dose:

Cl/F =
Doseparent

AUC∞

These pharmacokinetic parameters characterize glimepiride’s disposition and metabolism, en-
abling detailed representation of the drug’s ADME properties within the PBPK model.
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3 Results

3.1 Glimepiride data

The PBPK model development started with systematic curation of clinical pharmacokinetic
data for glimepiride. A literature search identified 85 studies from PKPDAI and 219 studies
from PubMed. An additional 27 studies were manually added. The workflow for this curation
process is illustrated in Fig. 6.

Figure 6: PRISMA flow diagram. Overview of data selection for the pharmacokinetics dataset of glimepiride
established in this work. PubMed, PKPDAI, and manual searches were used for the literature search on the
pharmacokinetics of glimepiride. Application of the eligibility criteria resulted in 19 studies, which were curated
for this work (see Tab. 3).

In total, 19 clinical studies meeting inclusion criteria were selected for model development and
evaluation. These provided pharmacokinetic data across various conditions, including dosing
protocols, administration routes, subject characteristics and co-administered drugs. Each study
received a unique PK-DB identifier linked to its PubMed ID for traceability.
The curated dataset was made publicly available as open data to promote transparency and
reproducibility. Tab. 3 summarizes the selected studies, including participant characteristics
and administration protocols.
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Table 3: Summary of studies for modeling. Overview of study identifiers, PK-DB IDs, administration routes,
dosing regimens, doses (mg), co-administered drugs (Co-admin.), and participant characteristics, including health
status, renal impairment (Ren. imp.), type 2 diabetes mellitus (T2DM ), and the studied genotypes/alleles (Allele).

Study PK-DB ID Route Dosing Dose
[mg]

Co-admin. Healthy Ren.
imp.

T2DM Allele

Ahmed2016 [65] PKDB00904 oral, trans-
dermal

single 1 ✓

Badian1994 [66] PKDB00907 oral, iv single 1 ✓

Badian1996 [67]1 PKDB00908 iv single 1.5 ✓

Choi2014 [68] PKDB00903 oral single 4 gemigliptin ✓

FDA [20] PKDB00946 oral, iv single 1, 1.5 ✓

Helmy2013 [69] PKDB00905 oral single 1, 2, 3,
4, 6

✓

Kasichayanu-
la2011c [70]

PKDB00924 oral single 4 dapagliflozin ✓

Kim2017 [71] PKDB00947 oral multiple 4 rosuvastatin ✓

Lee2012 [38] PKDB00948 oral single 2 ✓ *1, *3
Lehr1990 [72] PKDB00949 oral single 3 ✓

Liu2010 [73] PKDB00950 oral multiple 2 ✓

Malerczyk1994 [74] PKDB00906 oral single 1, 2, 4,
8

✓

Matsuki2007 [75] PKDB00951 oral single,
multi-
ple

2, 1 + 1 ✓

Niemi2002 [29] PKDB00952 oral single 0.5 ✓ *1, *2,
*3

Rosenkranz1996a
[26]

PKDB00954 oral single,
multi-
ple

3, 1 to
8

✓ ✓

Shukla2004 [27] PKDB00955 oral single 8 ✓

Suzuki2006 [28] PKDB00956 oral single 1 ✓ *1, *3
Wang2005 [31] PKDB00957 oral single 4 ✓ *1, *3
Yoo2011 [30] PKDB00958 oral single 2 ✓ *1, *3

1 M1 metabolite was administered.

3.2 Computational model

A PBPK model was developed using the curated pharmacokinetic dataset to simulate glimepiride
disposition under various physiological and pathological conditions.
The model integrates systemic circulation with representations of key tissues involved in glimepi-
ride pharmacokinetics: the gastrointestinal tract, liver, and kidneys (Fig. 7). These tissue-
specific models were combined into a whole-body framework to capture both local processes and
their systemic interactions.
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Figure 7: Physiologically based pharmacokinetic model of glimepiride. A) Whole-body model illustrating
systemic circulation via venous and arterial blood, with key organs (liver, kidney, GI tract) involved in glimepiride’s
(GLI) metabolism, distribution, and excretion. B) Intestinal model showing the dissolution and absorption of
GLI by enterocytes. No enterohepatic circulation of M1 and M2 is observed, but M1 and M2 are assumed to be
transported in a reverse direction via the enterocytes. Approximately 35% of the dose is excreted as metabolites
(M1 and M2) via feces. C) Hepatic model depicting CYP2C9-mediated metabolism of GLI in hepatocytes,
producing M1 (partially active) and M2 (inactive) metabolites. D) Renal model highlighting the elimination of
M1 and M2, approximately 55–60% of the dose, via urine, with no unchanged GLI detected in urine.

The following sections provide detailed explanations of the PBPK model components, including
the intestinal, liver, and kidney models. Each model is described in terms of its physiological
basis, parameterization, and role in capturing the pharmacokinetics of glimepiride. The integra-
tion of these components into a whole-body framework enables a comprehensive representation
of the drug’s behavior under various physiological and pathological conditions.

3.2.1 Intestine model

The intestinal model characterizes the dissolution, absorption and transport of glimepiride and
its metabolites in the gastrointestinal tract. It comprises four compartments: stomach (dissolu-
tion), intestinal lumen (absorption), plasma (systemic circulation), and feces (excretion). Fig. 8
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illustrates these processes.

Figure 8: Visualization of the intestine model. Glimepiride dissolves in the stomach, then transfers to the
intestinal lumen, where it can be absorbed into plasma. Metabolites M1 and M2 undergo reabsorption into the
intestinal lumen and excretion into feces.

Dissolution An oral dose of glimepiride (PODOSEgli) dissolves in the stomach, converting
mass to amount of substance:

dissolutiongli =
Kadis gli

60
·

PODOSEgli

Mrgli

where Kadis gli [hr−1] is scaled by
1

60
to convert to min−1, PODOSEgli is the oral dose in mg,

and Mrgli [g/mol] is the molecular weight of glimepiride. The corresponding ODE is:

d PODOSEgli

dt
= −dissolutiongli · Mrgli

Absorption Dissolved glimepiride enters the intestinal lumen and is absorbed into systemic
circulation at the rate:

GLIABS = fabsorption · GLIABSk · Vlumen · glilumen

where fabsorption is a scaling factor that can decrease under fed conditions, GLIABSk [min−1] is
the first-order absorption rate constant, Vlumen [L] is the volume of the intestinal lumen, and
glilumen [mmol/L] is the lumen concentration of glimepiride.
The net change in lumen glimepiride concentration is:

d glilumen

dt
= −

GLIABS

Vlumen
+

dissolutiongli

Vlumen
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Reabsorption and excretion of metabolites Metabolites M1 and M2 can return to the
intestinal lumen (after the biotransformation in the liver discussed in Sec. 3.2.3) and be excreted
in feces. The reabsorption rates for M1 (M1REABS) and M2 (M2REABS) are defined as:

M1REABS = MREABSk · m1ext · Vlumen

M2REABS = MREABSk · m2ext · Vlumen

where m1ext and m2ext [mmol/L] are the plasma concentrations of M1 and M2, respectively,
and MREABSk [min−1] is the first-order reabsorption rate constant.
Excretion from lumen to feces follows:

M1EXC = MEXCk · m1lumen · Vlumen

M2EXC = MEXCk · m2lumen · Vlumen

where m1lumen and m2lumen [mmol/L] denote the lumen concentrations of M1 and M2, respec-
tively, and MEXCk [min−1] is the excretion rate constant.
Net changes in lumen concentrations are:

d m1lumen

dt
=

M1REABS

Vlumen
−

M1EXC

Vlumen

d m2lumen

dt
=

M2REABS

Vlumen
−

M2EXC

Vlumen

Metabolite accumulation in feces is described by:

d m1feces

dt
= M1EXC

d m2feces

dt
= M2EXC

where m1feces and m2feces [mmol] represent the cumulative amounts excreted.

Total fecal metabolites The total amount of fecal metabolites is represented by:

mtotfeces = m1feces + m2feces

Changes in plasma Plasma concentration changes due to absorption or reabsorption are:

d gliext

dt
=

GLIABS

Vext

where Vext [L] is the plasma volume.
The plasma concentrations of metabolites M1 and M2 (m1ext and m2ext) change due to reab-
sorption:
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d m1ext

dt
= −

M1REABS

Vext

d m2ext

dt
= −

M2REABS

Vext

Assumptions The model assumes a single intestinal lumen compartment with identical rate
constants for M1 and M2 reabsorption (MREABSk) and excretion (MEXCk). Glimepiride
dissolution and absorption follow first-order kinetics. Food effects are captured by adjusting
fabsorption.

Key parameters Key parameters for the intestinal model include:

• Kadis gli [hr−1]: Dissolution rate constant for glimepiride.

• GLIABSk [min−1]: Absorption rate constant.

• MREABSk, MEXCk [min−1]: Reabsorption and excretion rate constants for M1 and M2.

• Vlumen [L]: Volume of the intestinal lumen.

• Mrgli [g/mol]: Molecular weight of glimepiride.

• fabsorption [-]: Scaling factor for food effects.

• Vext [L]: Plasma volume.

3.2.2 Kidney model

The kidney model characterizes renal excretion of glimepiride’s metabolites M1 and M2 through
plasma, kidney, and urine compartments. Fig. 9 illustrates the transport from systemic circula-
tion to urine.

Figure 9: Visualization of the kidney model. Metabolites M1 and M2 are transported from plasma to urine,
reflecting renal clearance.
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Excretion rates Renal excretion of M1 and M2 follows first-order kinetics, scaled by renal
function:

M1EX = frenal function · Vki · M1EXk · m1ext

M2EX = frenal function · Vki · M2EXk · m2ext

where frenal function is a scaling factor reflecting normal (= 1) or reduced (< 1) renal functionality,
Vki [L] is the kidney compartment volume, M1EXk and M2EXk [min−1] are excretion rate
constants, and m1ext, m2ext [mmol/L] are the plasma concentrations of M1 and M2, respectively.

Renal function The scaling factor frenal function links to clinical kidney function measures.
Estimated glomerular filtration rate (eGFR) is calculated as:

egfr = frenal function · egfrhealthy

where egfrhealthy [µL/min/m2] represents the typical eGFR value in a healthy individual. From
this, creatinine clearance (crcl) is derived as:

crcl =
egfr · BSA

1.73
· 1.1

where BSA [m2] is the body surface area, crcl is expressed in [mL/min], 1.73 [m2] is the standard
adult BSA used for normalization, and the factor 1.1 is a correction factor that accounts for the
systematic overestimation of creatinine clearance compared to the actual GFR. These equations
establish direct relationships between the model parameters and clinical assessments of renal
impairment.

ODE formulation Changes in plasma concentration and urine amount are governed by the
following differential equations:
For M1:

d m1ext

dt
= −

M1EX

Vext

d m1urine

dt
= M1EX

For M2:

d m2ext

dt
= −

M2EX

Vext

d m2urine

dt
= M2EX

where Vext [L] is the plasma volume.

Assumptions This model treats renal excretion as a first-order process, with rate constants
(M1EXk, M2EXk) for M1 and M2, scaled by frenal function.

22



Parameters Key parameters for the kidney model include:

• M1EXk, M2EXk [min−1]: First-order excretion rate constants for M1 and M2.

• Vki [L]: Kidney compartment volume.

• Vext [L]: Plasma volume in the kidney.

• frenal function [-]: Scaling factor to account for normal or impaired renal function.

3.2.3 Liver model

The liver model simulates the hepatic metabolism of glimepiride. This includes its stepwise
biotransformation into the metabolites M1 and M2. Glimepiride undergoes oxidative metabolism
via CYP2C9 to form M1, which is further converted to M2. The model tracks the transport of
glimepiride and its metabolites between the plasma and liver compartments as shown in Fig. 10.

Figure 10: Visualization of the liver model. Glimepiride is transported from plasma to the liver, where it
undergoes CYP2C9-mediated metabolism to form M1. This intermediate is further converted to M2 by cytosolic
enzymes. Both M1 and M2 are then exported back to plasma.

Transport of glimepiride Glimepiride is transported from plasma to liver proportional to
their concentration difference:

GLIIM = GLIIMk · Vli · (gliext − gli)

where GLIIMk [min−1] is the import rate constant, Vli [L] is the liver volume, and gliext, gli
[mmol/L] are the glimepiride concentrations in plasma and liver, respectively.

Biotransformation to M1 (CYP2C9) Glimepiride conversion to M1 follows Michaelis-
Menten kinetics:

GLI2M1 = fcyp2c9 · GLI2M1V max · Vli ·

gli

gli + GLI2M1Km gli

where fcyp2c9 is a scaling factor for CYP2C9 activity, GLI2M1 Vmax [mmol min−1 L−1] is the
maximum rate of conversion of GLI to M1, and GLI2M1 Km gli [mmol/L] is the Michaelis
constant.
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Export of M1 M1 export to plasma is concentration-gradient driven:

M1EX = M1EXk · Vli · (m1 − m1ext)

Conversion of M1 to M2 M1 conversion to M2 follows mass-action kinetics:

M12M2 = M12M2k · Vli · m1

where M12M2k [min−1] is the rate constant, and m1 [mmol/L] is the M1 concentration in the
liver.

Export of M2 Similarly, M2 is exported from the liver to plasma according to:

M2EX = M2EXk · Vli · (m2 − m2ext)

where m2 and m2ext are liver and plasma concentration, and M2EXk [min−1] is the M2 export
rate constant.

ODE formulation These processes yield the following differential equations for liver concen-
trations:

d gli

dt
=

GLIIM

Vli
−

GLI2M1

Vli

d m1

dt
=

GLI2M1

Vli
−

M1EX

Vli
−

M12M2

Vli

d m2

dt
=

M12M2

Vli
−

M2EX

Vli

Corresponding changes in the plasma concentrations are defined by:

d gliext

dt
= −

GLIIM

Vext

d m1ext

dt
=

M1EX

Vext

d m2ext

dt
=

M2EX

Vext

Assumptions This model assumes glimepiride is fully metabolized by the liver. CYP2C9
enzyme activity is varied by fcyp2c9. Glimepiride to M1 conversion follows Michaelis-Menten ki-
netics, while M1 to M2 conversion follows mass-action kinetics. Metabolite exports are modeled
as first-order processes driven by concentration gradients.

Key parameters Important parameters for the liver model include:

• GLIIMk [min−1]: Glimepiride import rate constant (plasma → liver).

• GLI2M1V max [mmol min−1 L−1], GLI2M1 Km gli [mmol/L]: Michaelis-Menten parame-
ters for glimepiride → M1 conversion.
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• M12M2k [min−1]: First-order rate constant for M1 → M2.

• M1EXk, M2EXk [min−1]: Rate constants for M1 and M2 export.

• fcyp2c9 [-]: Scaling factor for CYP2C9 activity.

• Vli, Vext [L]: Volumes of liver and plasma compartments, respectively.

3.2.4 Whole-body PBPK model

The whole-body PBPK model integrates the intestine, liver, and kidney submodels into a uni-
fied framework that represents glimepiride’s systemic pharmacokinetics. Each organ submodel
(described in Sec. 3.2.1–3.2.3) is connected via blood flow compartments, representing arterial
and venous blood, the portal vein, and the hepatic vein, to provide a comprehensive view of
absorption, distribution, metabolism, and excretion.
Key physiological parameters, such a tissue volumes, blood flow rates, partition coefficients,
and the tissue-to-plasma partitioning factor, ensure biological plausibility and allow accurate
prediction of glimepiride pharmacokinetics under various dosing regimens and patient-specific
conditions. By combining the individual organ models with system-wide circulation, this whole-
body approach captures both local processes and systemic dynamics. A detailed visualization
of the complete model structure is provided in the supplements (Fig. 43).
This integrated framework forms the basis for model evaluation through dose-dependency anal-
ysis (Sec. 3.4.1) and clinical applications examining physiological and genetic factors affecting
glimepiride pharmacokinetics (Sec. 3.4). The limitations and potential refinements of this ap-
proach are discussed in Sec. 4.

3.3 Parameter fitting

Following the development of the PBPK model structure, the model was optimized based on
parameter optimization on a subset of the established database and its predictive capability
was evaluated against experimental data. This evaluation establishes the model’s reliability for
subsequent applications to diverse physiological and pathological scenarios.
The results of the parameter fitting, including cost reduction over optimization steps and
goodness-of-fit are shown in Fig. 11.
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(a) Optimization traces (b) Goodness of fit

Figure 11: Results of the parameter fitting. (a) Cost reduction over optimization steps. (b) Goodness-of-fit
plot comparing model predictions to experimental data.

The optimization traces (Fig. 11a) demonstrates a successful convergence, with the cost function
stabilizing after approximately 250 optimization steps. All 100 optimizations resulted in similar
cost.
The goodness-of-fit plot (Fig. 11b) demonstrates that the model performs well across diverse
datasets, with many data points clustering closely around the identity line. Some deviations are
observed, with a few datasets exhibiting modest trends toward underprediction or overprediction.
These discrepancies likely reflect inter-study variability, potentially arising from differences in
study design, population characteristics, or measurement techniques.
The parameter fitting identified two parameters that reached their constraint boundaries: Kpgli

approached its lower and LI M2EXk approached its upper bound. These parameter values may
be limiting factors in the model’s ability to fit certain aspects of the data.
The final results of the optimal parameter fitting are summarized in Tab. 4. The optimized
parameter set effectively represents glimepiride pharmacokinetics across diverse datasets, despite
inter-study variability.
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Table 4: Optimized parameters for the glimepiride PBPK model.

Parameter Value Unit Description

GU GLIABSk 0.01590 min−1 Absorption rate constant of
glimepiride into plasma.

GU MREABSk 0.01592 min−1 Reabsorption rate constant of
metabolites into the intestines.

GU MEXCk 0.00017 min−1 Fecal excretion rate constant of
metabolites.

LI GLI2M1Vmax 0.00005 mmole/min/L Maximum velocity of glimepiride to
M1 conversion in the liver.

LI M1EXk 0.07774 min−1 Transport rate constant of M1 from
the liver to plasma.

LI M12M2k 0.01485 min−1 Rate constant of M1 to M2 conver-
sion in the liver.

LI M2EXk
1 99.99817 min−1 Transport rate constant of M2 from

the liver to plasma.
KI M1EXk 0.14801 min−1 Renal excretion rate constant of M1

into urine.
KI M2EXk 0.09849 min−1 Renal excretion rate constant of M2

into urine.
ftissuegli 0.00071 L/min Tissue-to-plasma partition coeffi-

cient of glimepiride.
Kpgli

2 10.02060 - Partition coefficient for glimepiride
distribution.

A total of 100 optimization runs were performed.
1 Reached upper bound during parameter optimization.
2 Reached lower bound during parameter optimization.

3.4 Model application

The developed PBPK model for glimepiride functions as a computational framework to explore
the influence of physiological and pathological factors on its pharmacokinetics. Specifically,
the model enables simulation of dose-dependent kinetics (Sec. 3.4.1), the consequences of renal
(Sec. 3.4.2) and hepatic (Sec. 3.4.3) impairments on drug disposition, the effects of physiolog-
ical parameters such as bodyweight (Sec. 3.4.4), and the impact of genetic polymorphisms in
CYP2C9 (Sec. 3.4.5). Further simulation results comparing the model against individual studies
are presented in the supplements (Sec. 6).

3.4.1 Dose dependency

Dose-dependency analysis of glimepiride pharmacokinetics was conducted across a clinically
relevant dose range (1–8 mg). Fig. 12 illustrates the simulated plasma concentration-time profiles
and cumulative excretion-time curves for glimepiride and its metabolites M1 and M2 following
oral administration.
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Figure 12: Simulated concentration-time and cumulative excretion-time profiles of glimepiride and
its primary metabolites following various oral doses. Profiles were generated for multiple glimepiride doses
to demonstrate dose dependency in absorption, metabolism, and excretion.

These dose-dependent relationships are quantified in Fig. 13 through main pharmacokinetic
parameters. Cmax and AUC showed dose-proportional increases for glimepiride, while Tmax and
half-life remained relatively constant over the therapeutic dose range. Study data points aligned
with the model simulations across the examined dose range.
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Figure 13: Dose-dependency relationships of key pharmacokinetic parameters for glimepiride and
its metabolites. Pharmacokinetic parameters are plotted against dose for glimepiride, M1 and M2. Simulation
results are compared with experimental data from all chosen 19 clinical studies.

Model performance against individual clinical studies is shown in Fig. 14a and Fig. 14b, demon-
strating the agreement between simulated and observed data across multiple dose levels in
diverse study populations. Model simulations closely matched observed plasma concentration-
time profiles with only minor discrepancies, while urinary excretion data demonstrated consistent
agreement across the entire dose range.

(a) Helmy2013 [69]. (b) Malerczyk1994 [74].

Figure 14: Model performance across multiple dose levels. (a) Simulated versus observed glimepiride
plasma concentrations after oral doses of 1–6 mg in healthy Egyptian volunteers (n=24) [69]. (b) Simulated
versus observed glimepiride plasma concentrations and cumulative M1 + M2 urinary excretion after 1–8 mg oral
doses in healthy Caucasian volunteers (n=12) [74]. Error bars represent ±SD.

3.4.2 Renal impairment

The effect of renal impairment on glimepiride pharmacokinetics was evaluated by simulating
varying degrees of dysfunction (mild, moderate, and severe) and comparing results with clinical
data from Rosenkranz et al. [26]. Fig. 15 shows the simulated concentration-time profiles and
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cumulative excretion curves for glimepiride and its metabolites across different states of renal
function.

Figure 15: Simulated pharmacokinetic profiles of glimepiride (4 mg dose) and its metabolites across
varying degrees of renal impairment. Concentration-time curves and cumulative excretion patterns are
compared to individuals with normal renal function.

The simulations show that plasma concentrations of glimepiride remained consistent across renal
function groups, while metabolites M1 and M2 showed progressive increases in maximum plasma
concentration and total exposure with worsening renal impairment. Cumulative urinary excre-
tion of M1 and M2 decreased with increasing impairment severity, accompanied by a concurrent
rise in fecal excretion of metabolites.
Fig. 16 illustrates the relationships between creatinine clearance and pharmacokinetic parame-
ters. Glimepiride pharmacokinetic parameters showed no correlation with creatinine clearance
across the spectrum from normal function (90–200 mL/min) to kidney failure (<15 mL/min).
In contrast, M1 and M2 clearance parameters exhibited direct proportionality with creatinine
clearance, with strong linear correlations observed for renal clearance values.
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Figure 16: Relationship between creatinine clearance and pharmacokinetic parameters in patients
with varying degrees of renal function. Simulation results (solid lines) are compared with observed data
from a clinical study [26] for multiple pharmacokinetic parameters (4 mg dose).

Model performance against clinical data is presented in Fig. 17a, comparing simulated plasma
concentration profiles with data from a subject with severe renal impairment. While the sim-
ulation captured concentration-time curve patterns, metabolite concentrations were underesti-
mated. Fig. 17b demonstrates accurate prediction of cumulative urinary metabolite excretion
across renal impairment categories, with simulated curves falling within the standard devia-
tion of observed data points, confirming the model’s ability to represent impaired metabolite
elimination despite limited clinical data.

(a) Simulated versus observed glimepiride, M1, M2, and M1 + M2 plasma
concentrations from a single individual with severe renal impairment.

(b) Simulated versus observed cumula-
tive M1 + M2 urine amounts in pa-
tients with varying degrees of renal im-
pairment (mild, moderate, and severe).
Error bars represent ±SD with sample
sizes: mild (n=5), moderate (n=3), and
severe (n=7).

Figure 17: Simulation Rosenkranz1996a [26].
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3.4.3 Hepatic impairment

The effect of hepatic impairment on glimepiride pharmacokinetics was evaluated by simulating
different degrees of cirrhosis according to the Child-Turcotte-Pugh (CTP) classification: mild
(Child-Pugh class A), moderate (Child-Pugh class B) and severe (Child-Pugh class C) cirrhosis.
Fig. 18 illustrates the concentration-time profiles and excretion patterns of glimepiride and its
metabolites across these different stages.

Figure 18: Simulated pharmacokinetic profiles of glimepiride (4 mg dose) and its metabolites across
varying degrees of cirrhosis. Concentration-time curves and cumulative excretion patterns are compared to
individuals with normal hepatic function.

Simulations showed a progressive increase in glimepiride plasma concentrations with increasing
cirrhosis severity. In contrast, M1 and M2 plasma concentrations decreased with progressive
hepatic impairment. Both urinary and fecal elimination of metabolites decreased with increasing
hepatic impairment severity.
Pharmacokinetic parameter analysis (Fig. 19) quantified these changes and provided comparison
with the limited available data from Rosenkranz et al.[25]. For glimepiride, all parameters (Cmax,
Tmax, AUC, and half-life) increased progressively with cirrhosis severity. In contrast, metabolite
parameters showed the opposite trend, with decreasing Cmax and AUC values as cirrhosis severity
increased.
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Figure 19: Effect of cirrhosis severity on simulated pharmacokinetic parameters of glimepiride (4
mg dose) and its metabolites. Simulation results are compared with limited available clinical data from
Rosenkranz et al. [25].

3.4.4 Bodyweight

The effect of bodyweight on glimepiride pharmacokinetics was assessed through simulations
across a physiologically relevant weight range and compared with clinical data from Shukla et
al. [27] and Gu et al. [76].
Fig. 20 illustrates plasma concentration-time profiles across different bodyweights, showing an
inverse relationship between concentration and bodyweight for glimepiride and its metabolites.
Fig. 21 quantifies the relationship between bodyweight and pharmacokinetic parameters. Both
Cmax and AUC decreased with increasing bodyweight, while Tmax and half-life remained rela-
tively constant across the weight range. Both metabolites exhibited similar trends.
Comparison of model simulations with clinical data from Shukla et al. [27] (Fig. 22 and Fig. 23)
showed good agreement between predicted and observed data. The model reproduced the ob-
served bodyweight-dependent pharmacokinetic trends in both normal weight and obese subjects.
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Figure 20: Simulated pharmacokinetic profiles of glimepiride (4 mg dose) and its metabolites across
different bodyweights. Concentration-time curves and cumulative excretion patterns illustrate the impact of
bodyweight on drug disposition.
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Figure 21: Effect of bodyweight on pharmacokinetic parameters of glimepiride (4 mg dose) and its
metabolites. The analysis quantifies how variations in bodyweight affect key pharmacokinetic metrics.

Figure 22: Simulation Shukla2004 [27]. Simulated versus observed glimepiride, M1, M2, and M1 + M2
plasma concentrations following an 8 mg oral dose in healthy (n=14) (normal weight) and morbidly obese (n=14)
individuals.
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Figure 23: Simulation Shukla2004 [27]. Simulated versus observed cumulative M1, M2, and M1 + M2
urinary excretion following an 8 mg oral dose in healthy (normal weight) and morbidly obese individuals. Error
bars represent ±SD (n=14 for each group).

3.4.5 CYP2C9 genotypes

The influence of CYP2C9 genotypes on glimepiride pharmacokinetics was evaluated by sim-
ulating four common genotypes (*1/*1, *1/*2, *1/*3, and *3/*3). These genotypes represent
varying degrees of enzymatic activity, with *1 being the wild-type allele (1.0 activity), *2 showing
moderately reduced function (0.68 activity), and *3 exhibiting substantially impaired function
(0.23 activity). Consequently, the diplotype enzymatic activities were modeled as *1/*1 (1.0),
*1/*2 (0.84), *1/*3 (0.62) and *3/*3 (0.23).

Figure 24: Simulated pharmacokinetic profiles of glimepiride (4 mg dose) and its metabolites across
the main CYP2C9 genotypes. Concentration-time curves and cumulative excretion patterns demonstrate the
impact of genetic polymorphisms on drug metabolism.

Fig. 24 shows the concentration-time profiles and excretion patterns across these genotypes.
Glimepiride plasma concentrations increased with reduced CYP2C9 activity, with *3/*3 carriers
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showing the highest exposure. Conversely, metabolite concentrations and excretion decreased
in carriers of reduced-function alleles.
Comparison with five clinical studies (Fig. 25) confirmed genotype-dependent differences in
glimepiride pharmacokinetics across diverse populations. The simulations captured the general
trend of increased exposure in reduced-function allele carriers, though considerable inter-study
variability was observed.

Suzuki2006 [28]. Wang2005 [31]. Yoo2011 [30].

Lee2012 [38]. Niemi2002 [29].

Figure 25: Model performance across CYP2C9 genotypes. Comparison of simulated versus observed
glimepiride plasma concentrations in individuals with different CYP2C9 genotypes across five clinical studies.
Studies include Japanese [28], Chinese [31], Korean [30, 38], and Finnish [29] populations with doses ranging from
0.5-4 mg.

Probabilistic approach A probabilistic approach was implemented to account for inter-
individual variability in CYP2C9-mediated drug metabolism. Fig. 26 illustrates the enzymatic
activity distributions used in model simulations.
The intrinsic clearance distribution (Fig. 26a) was fitted to population data from Yang et al. [63]
using a lognormal function. This distribution’s shape parameter was preserved while generating
allele-specific distributions. For each allele, the scale parameter of the lognormal distribution
was adjusted to the mean activity value for that allele (Fig. 26b). This maintained the variability
of enzymatic activity while representing the reduced function of *2 and *3 alleles.
The genotype distributions (Fig. 26c) represent the combined effect of paired alleles, showing
progressively reduced function and overlapping activity ranges across genotypes. This approach
provided a more realistic representation of inter-individual variability than fixed scaling factors
would allow.

37



(a) Intrinsic clearance distribution. (b) CYP2C9 allele activity distribution.

(c) CYP2C9 genotypes activity distribution.

Figure 26: CYP2C9 enzymatic activity and clearance distributions. (a) Intrinsic clearance distribution
with lognormal parametric fit. Histogram data and corresponding lognormal distribution fits for intrinsic clear-
ance (CLint) values from Yang et al. [63] are shown for combined population data. (b) Activity distributions
of enzymatic activity for CYP2C9 allelic variants (*1, *2, *3) with fitted curves and simulated data histograms.
Vertical dotted lines indicate mean enzymatic activities. (c) Activity distributions of CYP2C9 genotypes pre-
sented as histograms with corresponding lognormal fits. Vertical dashed lines indicate mean activities.

This probabilistic sampling approach showed good agreement between simulated and observed
pharmacokinetic parameters across CYP2C9 genotypes (Fig. 27). For glimepiride, the simulated
distributions of Cmax, Tmax, and AUC encompassed the observed clinical data points, with
consistent genotype-dependent trends from *1/*1 to *3/*3 carriers.
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Figure 27: Comparison of simulated and observed CYP2C9 genotype effects on glimepiride phar-
macokinetics (4 mg dose). Boxplots represent Cmax, Tmax, and AUC of glimepiride and its metabolites across
CYP2C9 genotypes. Grey squares indicate observed clinical data points from studies [28–31, 38], black square
represents weighted arithmetic mean across these study data points.
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Figure 28: Global distribution of CYP2C9 genotype activity across major biogeographical popula-
tions. Histograms show the frequency distribution of enzymatic activity for key genotypes (*1/*1, *1/*2, *1/*3,
*3/*3) and combined rare variants (summarized under “other”) within each population. Black curves represent
kernel density estimates of overall activity distribution for each region. X-axis represents relative enzymatic ac-
tivity; Y-axis shows normalized frequency. Map created with MapChart.net [77].
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Population-level simulations incorporating published CYP2C9 allele frequencies across major
biogeographical groups (Fig. 28) showed the global distribution of CYP2C9 enzymatic activity.
A comparison of CYP2C9 activity distributions across these populations is shown in Fig. 45
in the supplements. Pharmacokinetic parameters across ethnic groups (Fig. 29) showed subtle
variations in Cmax, Tmax, and AUC distributions. Statistical comparison using Kolmogorov-
Smirnov tests identified significant differences between specific population pairs (Tab. 14 in the
supplements), particularly between Near Eastern and Oceanian groups (p < 0.001), though the
magnitude of these differences was typically less than 10% for median values.

Figure 29: Ethnic differences in pharmacokinetic parameters of glimepiride and its metabolites.
Ridgeline plots showing the distribution of simulated (4 mg dose) Cmax, Tmax, and AUC values for glimepiride,
M1, and M2 across nine biogeographical populations. Dashed vertical lines indicate distribution modes.
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3.5 Summary

The developed PBPK model successfully characterized glimepiride pharmacokinetics across di-
verse physiological and pathological conditions. Based on data from 19 clinical studies, the
whole-body model integrated intestinal absorption, hepatic metabolism, and renal excretion
processes. Parameter optimization achieved good convergence, with predictions generally align-
ing with experimental data.
Key findings include: dose-proportional pharmacokinetics within the therapeutic range (1–8
mg) with consistent Tmax and half-life values; renal impairment primarily affecting metabolite
clearance while preserving parent drug exposure; hepatic dysfunction increasing glimepiride con-
centrations through reduced CYP2C9-mediated metabolism; an inverse relationship between
bodyweight and systemic exposure; and substantial alteration of pharmacokinetic profiles by
CYP2C9 genetic variants at the individual level, despite modest differences across biogeograph-
ical populations.
This comprehensive framework provides mechanistic insights into factors driving pharmacoki-
netic variability, establishing a foundation for personalized dosing strategies in diverse patient
populations with type 2 diabetes.
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4 Discussion

4.1 Data quality and limitations

The development of the PBPK model was constrained by limited pharmacokinetic data for
glimepiride. The literature search identified only 19 clinical studies that met the inclusion
criteria, providing a narrow base for model development. Data quality and completeness varied
between studies, with marked inter-study variability, possibly due to heterogeneity in protocols,
analytical methods, and population characteristics, preventing perfect agreement between model
predictions and all experimental datasets.
Quantitative information regarding elimination pathways was especially limited. Fecal excretion
data was exceptionally sparse, with time-course measurements available from only a single FDA
study [20] with a small sample size. While FDA documentation suggests non-biliary pathways
for fecal appearance of metabolites, specific mechanisms remain unclear. This lead to the incor-
poration of a simplified metabolite reabsorption mechanism from plasma to intestinal lumen in
the model.
Furthermore, the enzymes responsible for M1 to M2 conversion are insufficiently characterized
in existing literature, classified only as “cytosolic enzymes” [20] without specific identification or
kinetic parameters. To address this, the model implements this transformation as a first-order
process. While physiologically reasonable for unidirectional metabolic processes, this represents
an approximation. Direct measurement of these conversion kinetics would significantly improve
the model.
Despite these limitations, the curated dataset provided an adequate basis for developing a PBPK
model capable of characterizing the pharmacokinetics of glimepiride in various physiological and
pathological conditions. The model predictions should be interpreted with caution, particularly
for scenarios where validation data was limited. PBPK models face inherent challenges including
requirements for high-quality input data, rigorous validation against experimental results, and
computational demands of large-scale simulations [40]. Future studies addressing knowledge
gaps would enable further refinement of the model parameters and structure.

4.2 Computational model development

The PBPK model for glimepiride integrated distinct organ submodels into a framework capable
of simulating drug disposition across diverse physiological conditions. By incorporating repre-
sentations of intestinal absorption, hepatic metabolism, and renal excretion, the model enabled
evaluation of glimepiride pharmacokinetics under various scenarios. Parameter optimization
demonstrated successful convergence for most parameters.
Two parameters reached their constraint boundaries: Kpgli approached its lower bound, and
LI M2EXk approached its upper bound. The partition coefficient Kpgli convergence to its
lower boundary aligns with glimepiride’s pharmacokinetic profile of high plasma protein binding
and limited tissue distribution. This parameter behavior confirms that the model captures the
predominantly plasma-bound characteristics of glimepiride.
The parameter LI M2EXk reached its upper constraint boundary, which is substantially higher
than the corresponding M1 transport rate. This suggests that the model represents M2 transport
from liver to plasma as nearly instantaneous. While this mathematical representation success-
fully reproduced the observed data patterns, it could represent a simplification of the actual
physiological process. Such high transport rate constant may indicate either rapid physiological
transport or potentially an area where model structure could be refined with additional data on
metabolite disposition.
Most optimized parameters demonstrated physiological plausibility, falling within expected
ranges. Parameters related to absorption and metabolism aligned well with published literature
on glimepiride pharmacokinetics. Despite certain limitations, the model provided a physiolog-
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ically reasonable representation of glimepiride pharmacokinetics across diverse patient popula-
tions and clinical conditions. Future refinements could benefit from additional data on tissue
distribution and metabolite formation to address the identified parameter constraints.

4.3 Functional impairments and physiological factors

Dose dependency

The model successfully captured the dose-proportional pharmacokinetics of glimepiride across
the therapeutic range (1–8 mg). Linear increases in Cmax and AUC were consistent with first-
order kinetics, indicating predictable dose-exposure relationships without accumulation at higher
doses. The observed consistency in Tmax and elimination half-life across the dose range confirms
that absorption and elimination processes remain unsaturated at therapeutic doses, aligning
with previous clinical pharmacokinetic studies [16, 19]. Minor discrepancies between model
predictions and experimental data likely reflect inter-individual variability and differences in an-
alytical methodologies. The low plasma concentrations of the metabolites (M1: 25–200 ng/mL;
M2: 10–50 ng/mL) could have approached quantification limits of analytical methods available
in the 1990s–2000s, when many studies about glimepiride were conducted. These analytical lim-
itations may explain the greater inter-study variability observed in metabolite pharmacokinetic
parameters.

Renal impairment

The PBPK model confirmed that renal impairment predominantly affected metabolite dispo-
sition while having minimal impact on the parent drug. Plasma concentrations of the parent
drug remained stable across levels of renal function, whereas concentrations of the M1 and M2
metabolites increased proportionally with severity of renal impairment. This pattern is con-
sistent with known elimination pathways: glimepiride undergoes extensive hepatic metabolism
with no renal clearance, whereas its metabolites are predominantly excreted via the kidneys.
Glimepiride may not require major dose adjustments in patients with chronic kidney disease
(CKD), unlike many other renally excreted drugs. However, accumulation of the active M1
metabolite, which retains approximately 30% of the parent compound’s activity [20], may con-
tribute to prolonged hypoglycemic effects. Therefore, careful monitoring is still necessary in
patients with impaired renal function.
Rosenkranz et al. [26] reported an increase in glimepiride clearance with decreasing renal func-
tion. This may be explained by changes in plasma protein binding associated with chronic
kidney disease. In CKD patients, reduced serum albumin levels occur in addition to structural
modifications (glycation, carbamylation) of albumin itself. Accumulated uremic toxins may also
compete for albumin binding sites [78, 79]. These factors are likely to reduce the binding affin-
ity of glimepiride to albumin, thereby increasing the unbound drug fraction in plasma. This
increased free fraction promotes increased hepatic metabolism, as only unbound drug undergoes
biotransformation. While CKD typically causes a modest reduction in hepatic metabolic capac-
ity, the increased availability of free drug may override this effect [80], potentially explaining the
net increase in glimepiride clearance observed in CKD patients despite impaired renal function.
The model accurately reproduced glimepiride plasma concentrations in impaired renal function,
but underestimated peak metabolite concentrations in severe renal impairment scenarios. Clin-
ical data showed higher Cmax values of M1 and M2 than predicted. This discrepancy suggests
a potential underestimation of metabolite formation rates, possibly due to insufficient represen-
tation of reduced renal excretion or changes in protein binding that could enhance metabolism
to M1 and M2 more than modeled.
Despite these limitations, the pharmacokinetic parameters derived from the simulations showed
good agreement with the study data, particularly for glimepiride and M1. However, the un-
derestimation of M2 plasma concentrations (simulated Cmax approximately 50% of observed
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values) propagated into subsequent pharmacokinetic calculations and affected the derived clear-
ance estimates. This highlights the limitations of accurate modeling when there is only a limited
amount of clinical data available.
A limitation of this analysis is the reliance on a single source of clinical validation. Additional
data from larger population studies would improve the predictive performance of the model
under conditions of renal impairment.

Hepatic impairment

PBPK model simulations demonstrated a progressive increase in glimepiride plasma concen-
trations with worsening cirrhosis, accompanied by reduced formation of its metabolites. This
inverse relationship reflects impaired CYP2C9-mediated metabolism in hepatic dysfunction.
As liver function declines and CYP2C9 activity decreases, the model predicted increased glime-
piride AUC and half-life, along with lower Cmax values for metabolites M1 and M2. These
findings are consistent with reduced hepatic conversion of the parent compound.
Clinically, higher systemic exposure to glimepiride in hepatic impairment elevates the risk of
hypoglycemia, given the correlation between plasma levels and pharmacodynamic effects. The
model indicates that standard doses could lead to significantly increased exposure in patients
with moderate to severe cirrhosis.
A limitation of this analysis is the scarce availability of clinical data in hepatic impairment.
Rosenkranz et al. [25] provided only limited data and reported only minor pharmacokinetic
differences in patients with mild to moderate liver dysfunction, which contrasts with the model’s
predictions. However, that study involved a small sample and lacked data on advanced cirrhosis.
Given these limitations, mechanistic simulations become especially valuable for assessing drug
behavior in underrepresented populations. In such cases, PBPK modeling offers a useful frame-
work to evaluate pharmacokinetic risks and support dosing decisions where clinical evidence is
lacking.
Overall, the results support cautious dose adjustment in patients with significant liver dysfunc-
tion. While current guidelines advise caution, they lack quantitative recommendations. The
PBPK model could help refine individualized dosing to balance efficacy and safety in this pop-
ulation.

Bodyweight effects

The PBPK model demonstrated an inverse relationship between bodyweight and glimepiride ex-
posure. Both Cmax and AUC decreased with increasing bodyweight, while Tmax and elimination
half-life remained relatively constant. This pattern suggests that bodyweight predominantly
influences the volume of distribution rather than absorption or elimination.
These findings align with clinical observations from Shukla et al. [27], who compared glimepiride
pharmacokinetics between normal-weight and morbidly obese patients. Their study similarly
reported lower Cmax values in obese individuals, consistent with model predictions. When
clearance was normalized to body surface area, the study reported that values were comparable
between the groups, indicating that intrinsic drug elimination capacity remains largely unaffected
by obesity.
While normalized parameters provide insight into intrinsic clearance, absolute plasma concentra-
tions determine pharmacodynamic response. The model effectively captured these concentration
differences, offering a mechanistic explanation for bodyweight-related variability in drug expo-
sure. Despite these pharmacokinetic variations, Shukla et al. [27] concluded that specific dose
adjustments for obese patients are unnecessary, as glimepiride dosing is typically individualized
based on glycemic response. The model supports this clinical approach while offering insight into
how bodyweight may influence drug disposition and contribute to inter-individual variability.
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CYP2C9 genetics and population considerations

The PBPK model demonstrated a significant influence of CYP2C9 genetic polymorphisms on
glimepiride pharmacokinetics. Reduced-function alleles were associated with progressively in-
creased systemic exposure to the parent drug and decreased metabolite formation. Carriers
of the *3/*3 genotype exhibited approximately two-fold higher glimepiride AUC compared to
*1/*1 individuals, consistent with clinical data from multiple studies [28–31, 38].
Despite these clear genotype-associated trends, substantial inter-individual variability was ob-
served within each group. The model’s probabilistic implementation using genotype-level CYP-
2C9 activity distributions effectively captured this variation, revealing considerable overlap in
glimepiride exposure between different genotypes. This suggests that genotype alone cannot fully
predict pharmacokinetic response, as additional factors (age, comorbidities, polymorphisms in
other enzymes or transporters) likely contribute.
Due to the absence of direct glimepiride specific kinetic data, the model incorporates CYP2C9
intrinsic clearance data from diclofenac studies from Yang et al. [63]. Despite this limitation,
the approach enabled effective prediction of genotype effects by leveraging data from a well-
characterized CYP2C9 substrate. This demonstrates a key strength of PBPK modeling. The
approach can integrate data from related compounds to make mechanistic predictions even when
drug-specific measurements are limited.
While genotype effects were pronounced at the individual level, the model predicted only modest
differences in pharmacokinetics across biogeographical populations. For instance, statistically
significant differences in AUC and Cmax between Near Eastern and Oceanian groups were ob-
served, but the magnitude of these differences remained small. This indicates that ethnicity
alone provides limited value for guiding dosing decisions.
From a clinical perspective, these findings suggest that genotype-guided dosing may help avoid
overexposure and hypoglycemia in high-risk individuals. However, the substantial overlap in
allele activity across genotype groups and high inter-individual variability suggest that universal
genetic screening may offer limited benefits relative to its costs. A targeted strategy focusing on
patients with poor glycemic control, adverse effects, or high-risk clinical profiles may represent
a more appropriate approach.

Summary

This work highlights the potential of PBPK modeling to capture important physiological, patho-
logical and genetic influences on the pharmacokinetics of glimepiride. The model demonstrated
that hepatic and renal impairment, as well as CYP2C9 polymorphisms, can significantly al-
ter drug exposure and metabolism, with variability observed within patient groups. Despite
this variability, the model provided valuable mechanistic insights into how these factors influ-
ence pharmacokinetics, offering a foundation for individualized dose adjustments. These results
emphasize the importance of physiologically based modeling approaches for simulating drug be-
havior, especially in under-researched clinical contexts, and highlight their potential to inform
clinical decision-making.

46



5 Outlook

Future research should address several data limitations identified during model development.
Additional pharmacokinetic studies in patients with severe hepatic impairment are needed to
validate model predictions in this high-risk population, as current data are limited to moderate
impairment. More comprehensive data on renal dysfunction are also needed, as conclusions are
currently based on a single study. Further investigation of the kinetics of glimepiride metabolites,
particularly M1 and M2 concentrations, in patients with hepatic or renal impairment and in
individuals carrying CYP2C9 variants would improve mechanistic understanding and model
accuracy. Additionally, in vitro studies to characterize the specific cytosolic enzymes involved in
the M1-to-M2 conversion, as well as detailed investigations into the enzyme kinetics (e.g., Km
and Vmax) for this pathway, would provide more accurate representations.
Further refinement of the intestinal absorption and fecal excretion pathways would enhance the
model’s accuracy. The current model uses a metabolite reabsorption mechanism to account
for the observed fecal appearance of metabolites, but the precise non-biliary pathways remain
uncharacterized. Targeted studies to identify these elimination mechanisms would provide a
more physiologically accurate representation.
Incorporating albumin binding dynamics into the model could improve its predictions. As
discussed, altered albumin levels and binding properties in renal impairment may explain the
increase in glimepiride clearance observed by Rosenkranz et al. [26]. However, this phenomenon
for glimepiride has only been documented in a single study. To confirm and quantify this effect,
additional clinical investigations specifically designed to measure unbound glimepiride fractions
across varying degrees of renal function would be useful. Future model refinements could include
physiologically-based protein binding to account for glimepiride’s binding to albumin, compet-
itive binding with endogenous substances and uremic toxins, as well as the effects of altered
albumin structure in pathological states and variations in albumin levels across patient popu-
lations. This extension would enable simulations of how conditions affecting albumin influence
the free fraction of glimepiride available for metabolism and distribution.
A valuable extension to the current framework would be integration with pharmacodynamic
models of glucose-insulin regulation. By linking glimepiride and M1 concentrations to their
effects on insulin secretion and subsequent glucose reduction, a PBPK-PD model could predict
not only drug disposition but also glycemic responses. Such integration would require additional
clinical data correlating drug concentrations with insulin secretion rates and glucose levels across
diverse patient populations. The resulting model could simulate therapeutic outcomes under
various dosing regimens and pathophysiological conditions, accounting for differences in both
drug and insulin exposure. This approach would provide a platform for optimizing glycemic
control in individual patients, potentially enabling more precise dosing recommendations.
The implementation of these extensions would make the model more applicable to real-world
clinical decision-making. While pharmacokinetic modeling alone cannot account for all aspects
of therapeutic variability, its mechanistic insights mark a critical step toward personalized and
effective sulfonylurea therapy. By integrating patient-specific data, the model could ultimately
support precision medicine approaches in type 2 diabetes management.
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6 Supplements

Study simulations

Figure 30: Simulation Ahmed2016 [65]. Simulated and observed glimepiride plasma concentrations after a 1
mg oral dose in healthy Egyptian volunteers. Error bars represent ±SD (n=3).

Figure 31: Simulation Badian1994 [66]. Simulated and observed plasma concentrations of glimepiride, M1,
M2, and their combined total (M1+M2) following a 1 mg (oral or IV) dose in healthy Caucasian (n=12) volunteers.
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Figure 32: Simulation Badian1994 [66]. Simulated and observed urinary excretion of M1, M2, and their total
(M1+M2), following a 1 mg (oral or IV) dose in healthy Caucasian (n=12) volunteers.

Figure 33: Simulation Badian1996 [67]. Simulated and observed plasma concentrations of M1 and M2, as well
as urinary excretion of their combined total (M1+M2), following a 1.5 mg intravenous dose in healthy Caucasian
volunteers. Error bars indicate ±SD (n=12).

Figure 34: Simulation Choi2014 [68]. Simulated and observed glimepiride and M1 plasma concentrations
following a 4 mg oral dose of glimepiride, alone or in combination with 50 mg gemigliptin, in healthy volunteers.
Error bars represent ±SD (n=23).
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Figure 35: Simulation FDA [20]. Simulated and observed plasma concentrations of glimepiride, M1, M2, and
their combined amounts (M1 + M2) after a 1 mg oral or intravenous dose in healthy Korean (n=12) volunteers.

Figure 36: Simulation FDA [20]. Simulated and observed cumulative M1 + M2 urinary excretion after a 1 mg
glimepiride intravenous or oral dose in healthy (n=12) volunteers.
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Figure 37: Simulation FDA [20]. Simulated versus observed cumulative fecal excretion of glimepiride, M1, M2,
and total metabolites (M1 + M2) after a 1 mg oral dose in healthy (n=3) volunteers.

Figure 38: Simulation Kasichayanula2011c [70]. Simulated versus observed glimepiride plasma concentra-
tions after a 4 mg oral dose in healthy volunteers, with and without co-administration of 20 mg dapagliflozin.
Error bars represent ±SD (n=18). Note: This study was classified as an outlier during model development due
to the atypical double-peak concentration profile.

Figure 39: Simulation Kim2017 [71]. Simulated versus observed glimepiride plasma concentrations after
multiple 4 mg oral doses in healthy Korean volunteers, with and without co-administration of 20 mg rosuvastatin.
Error bars represent ±SD (n=24).
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Figure 40: Simulation Lehr1990 [72]. Simulated versus observed plasma concentrations of glimepiride, M1,
M2, and their sum (M1 + M2) after a 3 mg oral dose in a healthy volunteer. Data points represent the results
from a single individual (n=1).

Figure 41: Simulation Liu2010 [73]. Simulated versus observed plasma concentrations of glimepiride and its
metabolite M1 after a 2 mg oral dose in healthy Chinese volunteers (test and reference formulations). Error
bars represent ±SD (n=23). Note: This study was classified as an outlier during model development due to the
atypical double-peak concentration profile.
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Figure 42: Simulation Matsuki2007 [75]. Simulated versus observed glimepiride plasma concentrations after
a 2 mg single oral dose and two 1 mg doses in Japanese type 2 diabetic volunteers. Error bars represent ±SD
(n=8).

Figures

Figure 43: Whole-body PBPK model for glimepiride. The model integrates the intestine, liver, and kidney
submodels into the systemic circulation. Key transport and biochemical processes are represented, with arrows
indicating pathways for glimepiride and its metabolites (M1, M2) across compartments.
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Figure 44: CYP2C9 diplotype activity distribution across ethnic populations. Stacked histograms
illustrate the distribution of enzyme activity for key CYP2C9 genotypes (*1/*1, *1/*2, *1/*3, *3/*3) and other
variants by biogeographical group. Black curves represent kernel density estimates, while dashed vertical lines
indicate activity distribution modes.

Figure 45: Distribution of CYP2C9 activity across biogeographical populations. Boxplots represent
CYP2C9 activity by ethnicity, derived from population frequency data for known functional variants.
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Tables

CYP2C9 allele activities

Table 5: Relative enzymatic activity of CYP2C9 allelic variants derived from literature. Activity values are
normalized to wild-type (∗1) activity.

Allele Activity References Allele Activity References
∗1 1.00 Reference allele ∗38 0.64 [62]
∗2 0.68 [62], [60] ∗39 0.10 [62]
∗3 0.23 [62], [61], [28], [60] ∗40 1.03 [62]
∗8 0.09 [62] ∗41 0.75 [62]
∗11 0.61 [62] ∗42 0.03 [62]
∗13 0.02 [62] ∗43 0.07 [62]
∗14 0.06 [62] ∗44 0.15 [62]
∗16 0.04 [62] ∗45 0.08 [62]
∗19 0.01 [62] ∗46 0.23 [62]
∗23 0.07 [62] ∗47 1.15 [62]
∗26 0.10 [62] ∗48 0.67 [62]
∗27 0.15 [62] ∗49 0.51 [62]
∗28 0.44 [62] ∗50 0.29 [62]
∗29 0.36 [62] ∗51 0.91 [62]
∗30 0.25 [62] ∗52 0.03 [62]
∗31 0.14 [62] ∗53 0.87 [62]
∗33 0.04 [62] ∗54 0.95 [62]
∗34 0.41 [62] ∗55 0.11 [62]
∗36 1.46 [62] ∗56 0.81 [62]
∗37 0.75 [62]

Intrinsic clearance and CYP2C9 activity analysis

Table 6: Statistical analysis of CYP2C9 intrinsic clearance for diclofenac in human liver microsomes (left) and
parameters of fitted lognormal distribution (right). Data from Yang et al. [63].

Statistic Value Unit
Mean 251.47 L/hr
Median 222.00 L/hr
SD 173.55 L/hr
Minimum 15.00 L/hr
Maximum 790.00 L/hr
First quartile (Q1) 103.75 L/hr
Third quartile (Q3) 331.25 L/hr
Sample size: 60

Parameter Value
Shape (σ) 0.81
Scale (s) 191.31
Arithmetic Mean 264.99
SD 253.98
Coefficient of Variation 0.96
Mode 99.72
Kolmogorov-Smirnov test D 0.10
Kolmogorov-Smirnov test p-value 0.55

Table 7: Enzymatic activity of CYP2C9 allelic variants and genotypes derived from probabilistic sampling. Allelic
activities are scaled relative to wild-type (∗1), with reduced-function variants (∗2 and ∗3) showing progressively
decreased activity. Genotype activities represent combined effects of paired alleles.

Allele Mean Median SD Mode
∗1 1.00 1.00 0.73 0.91
∗2 0.68 0.68 0.49 0.63
∗3 0.23 0.23 0.17 0.21

Genotype Mean Median SD Mode
∗1/∗1 1.00 0.83 0.69 0.58
∗1/∗2 0.84 0.70 0.56 0.49
∗1/∗3 0.62 0.48 0.50 0.32
∗3/∗3 0.23 0.19 0.16 0.13

Sample size: 100,000
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CYP2C9 boxplot statistics

Table 8: Sampled glimepiride pharmacokinetic parameters by CYP2C9 genotype

Genotype Mean Median Min Q1 Q3 Max
Glimepiride AUC [ng*hr/ml]

∗1/∗1 1925.66 1864.73 307.07 1340.56 2427.87 4405.66
∗1/∗2 2196.06 2145.33 530.77 1614.88 2689.94 4885.69
∗1/∗3 2649.11 2644.96 226.37 1985.12 3353.00 4966.32
∗3/∗3 3842.99 3933.03 1272.23 3395.80 4358.30 5198.78

Glimepiride Tmax [hr]
∗1/∗1 2.32 2.35 1.35 2.13 2.52 2.97
∗1/∗2 2.42 2.44 1.61 2.26 2.60 3.05
∗1/∗3 2.55 2.58 1.23 2.39 2.76 3.07
∗3/∗3 2.85 2.88 2.10 2.76 2.96 3.11

Glimepiride Cmax [µM]
∗1/∗1 0.630 0.645 0.245 0.567 0.705 0.834
∗1/∗2 0.665 0.677 0.356 0.611 0.727 0.856
∗1/∗3 0.707 0.724 0.194 0.659 0.775 0.860
∗3/∗3 0.800 0.809 0.554 0.778 0.831 0.870

Table 9: Sampled M1 pharmacokinetic parameters by CYP2C9 genotype

Genotype Mean Median Min Q1 Q3 Max
M1 AUC [ng*hr/mL]

∗1/∗1 435.58 445.58 147.59 387.16 496.32 587.29
∗1/∗2 407.62 417.01 82.22 358.47 470.17 567.74
∗1/∗3 357.63 363.47 71.01 281.58 433.45 594.21
∗3/∗3 217.92 209.45 38.33 153.90 276.41 502.69

M1 Tmax [hr]
∗1/∗1 3.74 3.78 2.43 3.48 4.03 4.67
∗1/∗2 3.88 3.91 2.76 3.65 4.13 4.79
∗1/∗3 4.07 4.12 2.28 3.84 4.36 4.81
∗3/∗3 4.49 4.53 3.43 4.37 4.66 4.88

M1 Cmax [µM]
∗1/∗1 0.121 0.114 0.022 0.085 0.153 0.296
∗1/∗2 0.105 0.099 0.012 0.074 0.131 0.252
∗1/∗3 0.084 0.075 0.010 0.050 0.107 0.313
∗3/∗3 0.038 0.034 0.005 0.023 0.049 0.159

Table 10: Sampled M2 pharmacokinetic parameters by CYP2C9 genotype

Genotype Mean Median Min Q1 Q3 Max
M2 AUC [ng*hr/mL]

∗1/∗1 279.67 286.00 92.17 247.04 320.15 382.02
∗1/∗2 261.08 266.89 51.11 228.08 302.52 368.66
∗1/∗3 228.18 231.38 44.10 177.84 277.87 386.75
∗3/∗3 137.32 131.45 23.76 96.17 174.50 324.46

M2 Tmax [hr]
∗1/∗1 5.08 5.12 3.34 4.69 5.48 6.46
∗1/∗2 5.28 5.31 3.74 4.92 5.64 6.66
∗1/∗3 5.55 5.62 3.19 5.20 5.98 6.70
∗3/∗3 6.20 6.25 4.63 6.00 6.44 6.80

M2 Cmax [µM]
∗1/∗1 0.061 0.059 0.012 0.044 0.076 0.129
∗1/∗2 0.053 0.051 0.006 0.039 0.066 0.115
∗1/∗3 0.043 0.040 0.005 0.027 0.055 0.134
∗3/∗3 0.021 0.018 0.003 0.013 0.026 0.079
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CYP2C9 ethnicity statistics

Table 11: Mean (SD) for AUC [ng*hr/ml] of glimepiride and metabolites by ethnicity

Ethnicity Glimepiride M1 M2

African American/Afro-Caribbean 2032.83 (858.49) 423.61 (90.79) 271.82 (60.12)
American 2060.73 (844.07) 420.92 (88.63) 270.00 (58.79)
Central/South Asian 2164.15 (842.47) 410.23 (89.37) 262.89 (59.18)
East Asian 2120.46 (863.78) 414.52 (91.77) 265.77 (60.75)
European 2150.44 (825.32) 411.85 (87.34) 263.94 (57.87)
Latino 2116.43 (846.06) 415.15 (89.48) 266.17 (59.27)
Near Eastern 2163.27 (876.49) 409.93 (93.08) 262.73 (61.62)
Oceanian 1989.97 (773.72) 428.92 (81.22) 275.26 (53.89)
Sub-Saharan African 2174.18 (876.54) 408.80 (94.93) 262.01 (62.59)

Table 12: Mean (SD) for Tmax [hr] of glimepiride and metabolites by ethnicity

Ethnicity Glimepiride M1 M2

African American/Afro-Caribbean 2.35 (0.30) 3.79 (0.42) 5.15 (0.60)
American 2.36 (0.30) 3.80 (0.42) 5.17 (0.60)
Central/South Asian 2.40 (0.29) 3.85 (0.40) 5.24 (0.58)
East Asian 2.38 (0.29) 3.83 (0.41) 5.21 (0.59)
European 2.40 (0.28) 3.85 (0.39) 5.24 (0.57)
Latino 2.38 (0.29) 3.83 (0.41) 5.21 (0.59)
Near Eastern 2.40 (0.30) 3.85 (0.42) 5.23 (0.61)
Oceanian 2.35 (0.27) 3.78 (0.38) 5.13 (0.54)
Sub-Saharan African 2.40 (0.29) 3.86 (0.40) 5.25 (0.58)

Table 13: Mean (SD) for Cmax [µM] of glimepiride and metabolites by ethnicity

Ethnicity Glimepiride M1 M2

African American/Afro-Caribbean 0.64 (0.11) 0.1164 (0.0518) 0.0584 (0.0234)
American 0.64 (0.11) 0.1146 (0.0514) 0.0575 (0.0232)
Central/South Asian 0.66 (0.10) 0.1081 (0.0490) 0.0546 (0.0224)
East Asian 0.65 (0.10) 0.1111 (0.0501) 0.0560 (0.0229)
European 0.66 (0.10) 0.1085 (0.0481) 0.0548 (0.0220)
Latino 0.65 (0.10) 0.1112 (0.0505) 0.0560 (0.0229)
Near Eastern 0.66 (0.11) 0.1092 (0.0517) 0.0550 (0.0234)
Oceanian 0.64 (0.09) 0.1168 (0.0464) 0.0588 (0.0211)
Sub-Saharan African 0.66 (0.10) 0.1077 (0.0484) 0.0544 (0.0222)
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Table 14: Most significant ethnic differences in PK parameters

Compound Parameter Ethnicity 1 Ethnicity 2 KS Stat Adj. p-value Sig. % Diff
Glimepiride AUC Near Eastern Oceanian 0.12 5.37 * 10−5 *** -9.7%
Glimepiride AUC African American Near Eastern 0.10 1.45 * 10−3 ** 10.0%
Glimepiride AUC African American European 0.09 3.53 * 10−3 ** 9.1%

M1 Cmax Near Eastern Oceanian 0.12 5.37 * 10−5 *** 11.6%
M1 Cmax Central/South Asian Oceanian 0.12 5.37 * 10−5 *** 10.6%
M1 Cmax African American Near Eastern 0.10 1.45 * 10−3 ** -9.7%
M1 Cmax African American European 0.09 3.53 * 10−3 ** -8.9%
M2 Cmax Near Eastern Oceanian 0.12 5.37 * 10−5 *** 10.6%
M2 Cmax Central/South Asian Oceanian 0.12 5.37 * 10−5 *** 9.7%
M2 Cmax African American Near Eastern 0.10 1.45 * 10−3 ** -9.0%
M2 Cmax African American European 0.09 3.53 * 10−3 ** -8.2%
M2 AUC Near Eastern Oceanian 0.12 5.37 * 10−5 *** 5.2%
M2 Tmax Near Eastern Oceanian 0.12 4.51 * 10−5 *** -2.7%
M2 Tmax African American Near Eastern 0.10 8.72 * 10−4 *** 2.6%

Significance: *** p < 0.001, ** p < 0.01
KS Stat = Kolmogorov-Smirnov statistic (maximum difference between distribution functions).
The percentage difference shows the relative difference between median values.
P-values were adjusted using the Benjamini-Hochberg false discovery rate (FDR) procedure to address multiple
comparisons across ethnic groups and pharmacokinetic parameters.
African American refers to African American/Afro-Caribbean ethnicity.

Sampled CYP2C9 genotypes

Table 15: Sampled CYP2C9 genotypes and their resulting frequencies in biogeographical populations. Only
genotypes with known enzymatic activity values from the literature are included.

Genotype AA AM CA EA EU LA NE OC SA Activity

*1/*1 0.7587 0.8315 0.5962 0.8379 0.6285 0.7434 0.6113 0.9122 0.5264 1.00
*1/*2 0.0391 0.0609 0.1757 0.0039 0.2018 0.1315 0.2029 0.056 0.019 0.84
*1/*3 0.0235 0.0548 0.1696 0.0689 0.1198 0.0692 0.129 0.0298 0.0162 0.62
*1/*8 0.1028 0.0372 0.0015 0.0068 0.0029 0.0127 0.001 0 0.1101 0.55

*1/*11 0.0241 0.0051 0.0016 0.0005 0.0026 0.005 0 0 0.0373 0.81
*2/*3 0.0006 0.002 0.025 0.0002 0.0192 0.0061 0.0214 0.0009 0.0003 0.46
*2/*2 0.0005 0.0011 0.0129 4.00e-06 0.0162 0.0058 0.0168 0.0009 0.0002 0.68
*3/*3 0.0002 0.0009 0.0121 0.0014 0.0057 0.0016 0.0068 0.0002 0.0001 0.23

*1/*42 0 0 0 0.0183 0 0.0002 0.0009 0 0 0.52
*1/*55 0 0 0 0.019 0 0 0 0 0 0.56
*8/*8 0.0035 0.0004 0 1.30e-05 3.00e-06 5.40e-05 0 0 0.0058 0.09
*2/*8 0.0026 0.0014 0.0002 1.50e-05 0.0005 0.0011 0.0002 0 0.002 0.39

*1/*13 0 0 0 0.0061 0 0 0 0 0 0.51
*3/*8 0.0016 0.0012 0.0002 0.0003 0.0003 0.0006 0.0001 0 0.0017 0.16

*8/*11 0.0016 0.0001 2.00e-06 2.00e-06 5.00e-06 4.20e-05 0 0 0.0039 0.35
*1/*29 0 0 0 0.004 0 0 0 0 0 0.68
*1/*26 0 0 0 0.0037 0 0 0 0 0 0.55
*1/*28 0 0 0 0.0037 0 0 0 0 0 0.72
*1/*16 0 0 0 0.0034 0 0 0 0 0 0.52
*1/*27 0 0 0 0.003 0 0 0 0 0 0.58
*1/*31 0 0 0 0.0029 0 0 0 0 0 0.57
*1/*30 0 0 0 0.0029 0 0 0 0 0 0.63
*1/*33 0 0 0 0.0012 0 0 0.0016 0 0 0.52
*2/*11 0.0006 0.0002 0.0002 1.00e-06 0.0004 0.0004 0 0 0.0007 0.65
*1/*14 0 0 0 0.0006 0 0 0.0016 0 0 0.53
*3/*11 0.0004 0.0002 0.0002 2.20e-05 0.0002 0.0002 0 0 0.0006 0.42
*1/*45 0 0 0.0003 0 0.0003 0.0009 0 0 0 0.54
*1/*19 0 0 0 0.0009 0 0 0 0 0 0.51

*11/*11 0.0002 7.00e-06 1.00e-06 0 2.00e-06 8.00e-06 0 0 0.0007 0.61
*3/*42 0 0 0 0.0008 0 8.00e-06 8.90e-05 0 0 0.13
*3/*55 0 0 0 0.0008 0 0 0 0 0 0.17
*1/*44 0 0 0 0 0 0.0005 0 0 0 0.58
*1/*34 0 0 0 0.0004 0 0 0 0 0 0.71
*1/*23 0 0 0 0.0004 0 0 0 0 0 0.54
*2/*33 0 0 0 2.00e-06 0 0 0.0003 0 0 0.36
*2/*14 0 0 0 1.00e-06 0 0 0.0003 0 0 0.37
*3/*13 0 0 0 0.0002 0 0 0 0 0 0.13
*3/*33 0 0 0 4.90e-05 0 0 0.0002 0 0 0.14

*42/*55 0 0 0 0.0002 0 0 0 0 0 0.07
*2/*42 0 0 0 4.20e-05 0 1.50e-05 0.0001 0 0 0.36
*3/*14 0 0 0 2.50e-05 0 0 0.0002 0 0 0.15
*2/*45 0 0 4.50e-05 0 5.00e-05 7.60e-05 0 0 0 0.38
*3/*29 0 0 0 0.0002 0 0 0 0 0 0.30
*1/*43 0 0 0.0002 0 0 0 0 0 0 0.54
*3/*28 0 0 0 0.0001 0 0 0 0 0 0.34
*3/*26 0 0 0 0.0001 0 0 0 0 0 0.17
*3/*16 0 0 0 0.0001 0 0 0 0 0 0.14
*3/*27 0 0 0 0.0001 0 0 0 0 0 0.19
*3/*31 0 0 0 0.0001 0 0 0 0 0 0.19
*3/*30 0 0 0 0.0001 0 0 0 0 0 0.24
*3/*45 0 0 4.30e-05 0 3.00e-05 4.00e-05 0 0 0 0.16

*55/*55 0 0 0 0.0001 0 0 0 0 0 0.11
*42/*42 0 0 0 0.0001 0 0 0 0 0 0.03
*8/*55 0 0 0 7.70e-05 0 0 0 0 0 0.10

Continued on next page
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Table 15 – continued from previous page
Genotype AA AM CA EA EU LA NE OC SA Activity

*8/*42 0 0 0 7.40e-05 0 1.00e-06 0 0 0 0.06
*13/*55 0 0 0 6.80e-05 0 0 0 0 0 0.07
*13/*42 0 0 0 6.60e-05 0 0 0 0 0 0.03
*2/*44 0 0 0 0 0 4.50e-05 0 0 0 0.42

*29/*55 0 0 0 4.50e-05 0 0 0 0 0 0.24
*2/*55 0 0 0 4.40e-05 0 0 0 0 0 0.40

*29/*42 0 0 0 4.40e-05 0 0 0 0 0 0.20
*26/*55 0 0 0 4.10e-05 0 0 0 0 0 0.11
*28/*55 0 0 0 4.10e-05 0 0 0 0 0 0.28
*26/*42 0 0 0 4.00e-05 0 0 0 0 0 0.07
*28/*42 0 0 0 4.00e-05 0 0 0 0 0 0.24
*16/*55 0 0 0 3.90e-05 0 0 0 0 0 0.08
*16/*42 0 0 0 3.70e-05 0 0 0 0 0 0.04
*3/*19 0 0 0 3.50e-05 0 0 0 0 0 0.12

*27/*55 0 0 0 3.30e-05 0 0 0 0 0 0.13
*31/*55 0 0 0 3.30e-05 0 0 0 0 0 0.13
*27/*42 0 0 0 3.20e-05 0 0 0 0 0 0.09
*31/*42 0 0 0 3.20e-05 0 0 0 0 0 0.09
*30/*55 0 0 0 3.20e-05 0 0 0 0 0 0.18
*30/*42 0 0 0 3.10e-05 0 0 0 0 0 0.14
*8/*13 0 0 0 2.40e-05 0 0 0 0 0 0.06
*3/*44 0 0 0 0 0 2.40e-05 0 0 0 0.19
*2/*43 0 0 2.20e-05 0 0 0 0 0 0 0.38
*3/*43 0 0 2.10e-05 0 0 0 0 0 0 0.15
*8/*29 0 0 0 1.60e-05 0 0 0 0 0 0.23
*3/*23 0 0 0 1.50e-05 0 0 0 0 0 0.15
*3/*34 0 0 0 1.50e-05 0 0 0 0 0 0.32
*8/*26 0 0 0 1.40e-05 0 0 0 0 0 0.10
*8/*28 0 0 0 1.40e-05 0 0 0 0 0 0.27
*2/*13 0 0 0 1.40e-05 0 0 0 0 0 0.35

*13/*29 0 0 0 1.40e-05 0 0 0 0 0 0.19
*33/*42 0 0 0 1.30e-05 0 0 1.00e-06 0 0 0.04
*8/*16 0 0 0 1.40e-05 0 0 0 0 0 0.07

*33/*55 0 0 0 1.30e-05 0 0 0 0 0 0.08
*13/*28 0 0 0 1.30e-05 0 0 0 0 0 0.23
*13/*26 0 0 0 1.30e-05 0 0 0 0 0 0.06
*13/*16 0 0 0 1.20e-05 0 0 0 0 0 0.03
*8/*27 0 0 0 1.20e-05 0 0 0 0 0 0.12

*13/*13 0 0 0 1.10e-05 0 0 0 0 0 0.02
*8/*31 0 0 0 1.10e-05 0 0 0 0 0 0.12
*8/*30 0 0 0 1.10e-05 0 0 0 0 0 0.17

*13/*27 0 0 0 1.00e-05 0 0 0 0 0 0.09
*13/*30 0 0 0 1.00e-05 0 0 0 0 0 0.14
*13/*31 0 0 0 1.00e-05 0 0 0 0 0 0.08
*19/*42 0 0 0 9.00e-06 0 0 0 0 0 0.02
*19/*55 0 0 0 9.00e-06 0 0 0 0 0 0.06
*2/*29 0 0 0 9.00e-06 0 0 0 0 0 0.52

*26/*28 0 0 0 8.00e-06 0 0 0 0 0 0.27
*26/*29 0 0 0 8.00e-06 0 0 0 0 0 0.23
*28/*29 0 0 0 8.00e-06 0 0 0 0 0 0.40
*2/*26 0 0 0 8.00e-06 0 0 0 0 0 0.39

*16/*29 0 0 0 8.00e-06 0 0 0 0 0 0.20
*2/*28 0 0 0 8.00e-06 0 0 0 0 0 0.56

*27/*29 0 0 0 7.00e-06 0 0 0 0 0 0.26
*14/*42 0 0 0 6.00e-06 0 0 1.00e-06 0 0 0.05
*29/*31 0 0 0 7.00e-06 0 0 0 0 0 0.25
*16/*28 0 0 0 7.00e-06 0 0 0 0 0 0.24
*16/*26 0 0 0 7.00e-06 0 0 0 0 0 0.07
*2/*16 0 0 0 7.00e-06 0 0 0 0 0 0.36
*8/*45 0 0 0 0 0 7.00e-06 0 0 0 0.09

*16/*31 0 0 0 6.00e-06 0 0 0 0 0 0.09
*2/*30 0 0 0 6.00e-06 0 0 0 0 0 0.47
*2/*31 0 0 0 6.00e-06 0 0 0 0 0 0.41
*2/*27 0 0 0 6.00e-06 0 0 0 0 0 0.42

*29/*30 0 0 0 6.00e-06 0 0 0 0 0 0.31
*14/*55 0 0 0 6.00e-06 0 0 0 0 0 0.09
*28/*30 0 0 0 6.00e-06 0 0 0 0 0 0.35
*28/*31 0 0 0 6.00e-06 0 0 0 0 0 0.29
*26/*27 0 0 0 6.00e-06 0 0 0 0 0 0.13
*26/*30 0 0 0 6.00e-06 0 0 0 0 0 0.18
*26/*31 0 0 0 6.00e-06 0 0 0 0 0 0.12
*27/*28 0 0 0 6.00e-06 0 0 0 0 0 0.30
*11/*55 0 0 0 6.00e-06 0 0 0 0 0 0.36
*16/*27 0 0 0 6.00e-06 0 0 0 0 0 0.10
*27/*31 0 0 0 5.00e-06 0 0 0 0 0 0.15
*27/*30 0 0 0 5.00e-06 0 0 0 0 0 0.20
*16/*30 0 0 0 5.00e-06 0 0 0 0 0 0.15
*11/*42 0 0 0 5.00e-06 0 0 0 0 0 0.32
*30/*31 0 0 0 5.00e-06 0 0 0 0 0 0.20
*8/*33 0 0 0 4.00e-06 0 0 1.00e-06 0 0 0.07

*34/*42 0 0 0 4.00e-06 0 0 0 0 0 0.22
*34/*55 0 0 0 4.00e-06 0 0 0 0 0 0.26
*13/*33 0 0 0 4.00e-06 0 0 0 0 0 0.03
*8/*44 0 0 0 0 0 4.00e-06 0 0 0 0.12

*23/*55 0 0 0 4.00e-06 0 0 0 0 0 0.09
*23/*42 0 0 0 4.00e-06 0 0 0 0 0 0.05
*28/*28 0 0 0 4.00e-06 0 0 0 0 0 0.44
*29/*29 0 0 0 4.00e-06 0 0 0 0 0 0.36
*26/*26 0 0 0 4.00e-06 0 0 0 0 0 0.10
*8/*14 0 0 0 2.00e-06 0 0 1.00e-06 0 0 0.08
*8/*19 0 0 0 3.00e-06 0 0 0 0 0 0.05

*16/*16 0 0 0 3.00e-06 0 0 0 0 0 0.04
*13/*19 0 0 0 3.00e-06 0 0 0 0 0 0.02
*13/*14 0 0 0 2.00e-06 0 0 0 0 0 0.04
*26/*33 0 0 0 2.00e-06 0 0 0 0 0 0.07
*16/*33 0 0 0 2.00e-06 0 0 0 0 0 0.04
*27/*27 0 0 0 2.00e-06 0 0 0 0 0 0.15

Continued on next page
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Table 15 – continued from previous page
Genotype AA AM CA EA EU LA NE OC SA Activity

*11/*45 0 0 0 0 0 2.00e-06 0 0 0 0.35
*31/*33 0 0 0 2.00e-06 0 0 0 0 0 0.09
*31/*31 0 0 0 2.00e-06 0 0 0 0 0 0.14
*27/*33 0 0 0 2.00e-06 0 0 0 0 0 0.10
*30/*33 0 0 0 2.00e-06 0 0 0 0 0 0.15
*30/*30 0 0 0 2.00e-06 0 0 0 0 0 0.25
*29/*33 0 0 0 2.00e-06 0 0 0 0 0 0.20
*19/*29 0 0 0 2.00e-06 0 0 0 0 0 0.19
*14/*33 0 0 0 0 0 0 2.00e-06 0 0 0.05
*2/*19 0 0 0 2.00e-06 0 0 0 0 0 0.35

*28/*33 0 0 0 2.00e-06 0 0 0 0 0 0.24
*19/*28 0 0 0 1.00e-06 0 0 0 0 0 0.23
*19/*30 0 0 0 1.00e-06 0 0 0 0 0 0.13
*19/*27 0 0 0 1.00e-06 0 0 0 0 0 0.08
*19/*26 0 0 0 1.00e-06 0 0 0 0 0 0.06
*8/*34 0 0 0 1.00e-06 0 0 0 0 0 0.25

*11/*16 0 0 0 1.00e-06 0 0 0 0 0 0.33
*19/*31 0 0 0 1.00e-06 0 0 0 0 0 0.08
*8/*23 0 0 0 1.00e-06 0 0 0 0 0 0.08

*11/*13 0 0 0 1.00e-06 0 0 0 0 0 0.32
*13/*34 0 0 0 1.00e-06 0 0 0 0 0 0.22
*11/*26 0 0 0 1.00e-06 0 0 0 0 0 0.36
*11/*28 0 0 0 1.00e-06 0 0 0 0 0 0.53
*11/*29 0 0 0 1.00e-06 0 0 0 0 0 0.49
*11/*44 0 0 0 0 0 1.00e-06 0 0 0 0.38
*14/*14 0 0 0 0 0 0 1.00e-06 0 0 0.06
*16/*19 0 0 0 1.00e-06 0 0 0 0 0 0.03
*33/*33 0 0 0 0 0 0 1.00e-06 0 0 0.04
*13/*23 0 0 0 1.00e-06 0 0 0 0 0 0.05
*14/*31 0 0 0 1.00e-06 0 0 0 0 0 0.10
*14/*30 0 0 0 1.00e-06 0 0 0 0 0 0.16
*14/*29 0 0 0 1.00e-06 0 0 0 0 0 0.21
*14/*27 0 0 0 1.00e-06 0 0 0 0 0 0.11
*14/*26 0 0 0 1.00e-06 0 0 0 0 0 0.08
*14/*16 0 0 0 1.00e-06 0 0 0 0 0 0.05
*14/*28 0 0 0 1.00e-06 0 0 0 0 0 0.25

Total 0.960 0.997 0.996 0.995 0.999 0.980 0.995 1 0.725

AA: African American/Afro-Caribbean; AM: American; CA: Central/South Asian; EA: East Asian; EU: European;
LA: Latino; NE: Near Eastern; OC: Oceanian; SA: Sub-Saharan African.
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Sarah M. Keating, Matthias König, Nicolas Le Novère, Chris J. Myers, Brett G. Olivier,
Sven Sahle, James C. Schaff, Rahuman Sheriff, Lucian P. Smith, Dagmar Waltemath, Dar-
ren J. Wilkinson, and Fengkai Zhang. “The Systems Biology Markup Language (SBML):
Language Specification for Level 3 Version 2 Core Release 2”. In: Journal of Integra-
tive Bioinformatics 16.2 (June 20, 2019). doi: 10.1515/jib-2019-0021. url: https:

//www.degruyter.com/document/doi/10.1515/jib- 2019- 0021/html (visited on
04/19/2024).

[48] Sarah M Keating et al. “SBML Level 3: An Extensible Format for the Exchange and
Reuse of Biological Models”. In: Molecular Systems Biology 16.8 (Aug. 2020), e9110. doi:
10.15252/msb.20199110. url: https://www.embopress.org/doi/10.15252/msb.

20199110 (visited on 12/09/2024).

64

https://doi.org/10.1124/dmd.115.065920
http://dmd.aspetjournals.org/lookup/doi/10.1124/dmd.115.065920
https://doi.org/10.1007/s10928-016-9492-y
https://doi.org/10.1007/s10928-016-9492-y
http://link.springer.com/10.1007/s10928-016-9492-y
https://doi.org/10.1007/s40262-022-01194-3
http://www.ncbi.nlm.nih.gov/pubmed/36571702
https://doi.org/10.1111/j.1365-2710.2006.00766.x
http://www.ncbi.nlm.nih.gov/pubmed/16958825
https://doi.org/10.1007/s40262-014-0192-8
https://doi.org/10.1007/s40262-014-0192-8
http://www.ncbi.nlm.nih.gov/pubmed/25316573
https://doi.org/10.1016/S1478-5382(03)02342-4
https://linkinghub.elsevier.com/retrieve/pii/S1478538203023424
https://doi.org/10.3389/fphys.2011.00004
http://journal.frontiersin.org/article/10.3389/fphys.2011.00004/abstract
http://journal.frontiersin.org/article/10.3389/fphys.2011.00004/abstract
https://doi.org/10.1515/jib-2019-0021
https://www.degruyter.com/document/doi/10.1515/jib-2019-0021/html
https://www.degruyter.com/document/doi/10.1515/jib-2019-0021/html
https://doi.org/10.15252/msb.20199110
https://www.embopress.org/doi/10.15252/msb.20199110
https://www.embopress.org/doi/10.15252/msb.20199110


[49] Jan Grzegorzewski, Janosch Brandhorst, Kathleen Green, Dimitra Eleftheriadou, Yannick
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