
libRoadRunner: A High Performance SBML Simulation

and Analysis Library

Endre T. Somogyi1,∗, Jean-Marie Bouteiller3, James A. Glazier1, Matthias
König2, J. Kyle Medley4, Maciej H. Swat1, and Herbert M. Sauro4,∗

1Biocomplexity Institute and Department of Physics, Indiana University, Bloomington, IN 47405,

USA
2Department of Computational Systems Biochemistry, University Medicine Charité Berlin, 10117

Berlin, Germany
3Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089,

USA
4Department of Bioengineering, University of Washington, Seattle, WA 98195, USA

Version 1.0

ABSTRACT

Motivation: This paper presents libRoadRunner, an extensible, high-

performance, cross-platform, open-source software library for the

simulation and analysis of models expressed using Systems Biology

Markup Language (SBML). SBML is the most widely used standard

for representing dynamic networks, especially biochemical networks.

libRoadRunner is fast enough to support large-scale problems such

as tissue models, studies that require large numbers of repeated runs

and interactive simulations.

Results: libRoadRunner is a self-contained library, able to run both

as a component inside other tools via its C++ and C bindings,

and interactively through its Python interface. Its Python Application

Programming Interface (API) is similar to the APIs of MATLAB (www.

mathworks.com) and SciPy (http://www.scipy.org/), making

it fast and easy to learn. libRoadRunner uses a custom Just-In-Time

(JIT) compiler built on the widely-used LLVM JIT compiler framework.

It compiles SBML-specified models directly into native machine code

for a variety of processors, making it appropriate for solving extremely

large models or repeated runs. libRoadRunner is flexible, supporting

the bulk of the SBML specification (except for delay and nonlinear

algebraic equations) including several SBML extensions (composition

and distributions). It offers multiple deterministic and stochastic

integrators, as well as tools for steady-state analysis, stability analysis

and structural analysis of the stoichiometric matrix.

Availability and Implementation: libRoadRunner binary distributions

are available for Mac OS X, Linux and Windows. The library is

licensed under Apache License Version 2.0. libRoadRunner is also

available for ARM based computers such as the Raspberry Pi.

http://www.libroadrunner.org provides online documentation, full build

instructions, binaries and a git source repository.

Contacts: hsauro@u.washington.edu, somogyie@indiana.edu

∗to whom correspondence should be addressed

1 INTRODUCTION

Dynamic network models (Sauro, 2014) of metabolic, gene

regulatory, protein-signaling and electrophysiological networks

require the specification of components, interactions, compartments

and kinetic parameters. The Systems Biology Markup Language

(SBML) (Hucka et al., 2003) has become the de facto standard for

declarative specification of these types of model (Sauro et al., 2009;

Dräger et al., 2014).

Popular tools for the development, simulation and analysis of

models specified in SBML include COPASI (Hoops et al., 2006),

Systems Biology Workbench (SBW) (Bergmann and Sauro, 2006),

The Systems Biology Simulation Core Algorithm (TSBSC) (Keller

et al., 2013), Jarnac (Sauro and Fell, 2000), libSBMLSim (Takizawa

et al., 2013), SOSLib (Machné et al., 2006), iBioSim (Myers et al.,

2009), PySCeS (Olivier et al., 2005), and VirtualCell (Moraru

et al., 2008). Some of these applications are stand-alone packages

designed for interactive use, with limited reusability as components

in other applications. Few are reusable libraries. Currently, none are

fast enough to support emerging applications that require large-scale

simulation of network dynamics. For example, multi-cell virtual-

tissue simulations (Hester et al., 2011) often require simultaneous

simulation of tens of thousands of replicas of dynamic network

models residing in their cell objects and interacting between

cells. In addition, optimization methods require generation of

time-series for tens of thousands of replica networks to explore

the high-dimensional parameter spaces typical of biochemical

networks (Bouteiller et al., 2015).

We designed libRoadRunner to provide: 1) Efficient time-series

generation and analysis of large or multiple SBML-based models;

2) A comprehensive and logical API; 3) Interactive simulations in

the style of IPython and MATLAB; and 4) Extensibility.

Most existing SBML simulation engines use built-in interpreters

to parse and execute SBML model specifications. Interpreted

execution is simple and flexible, but much slower than execution

of compiled code. Other simulation engines generate compiled

executables from SBML by first converting SBML-specified models

1

Associate Editor: Dr. Jonathan Wren

Published by Oxford University Press 2015. This work is written by US Government employees and are in

the public domain in the US.

 Bioinformatics Advance Access published June 17, 2015
 at C

haritÃ
©

 - U
niversitaetsm

edizin B
erlin on July 8, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

,

into a general-purpose-language representation. The engines then

call an external compiler to translate the general-purpose-language

into an executable shared library to load at run time. E.g., SBW-

roadRunner in the SBW suite (Bergmann and Sauro, 2006) converts

SBML into C# (see § 1.4 of (Aho et al., 1986)), then compiles

the C# using the built-in compiler from the .NET distribution. This

approach generates relatively fast executables. However, it requires

distribution of a separate compiler or a redistributable runtime,

reducing portability.

A more efficient approach to SBML-to-executable compilation

uses a specialized just in time JIT compiler, to compile SBML

into an optimized Intermediate Language (IL) representation and

the IL code into native executable machine code directly in-

memory. Ackermann et al. (Ackermann et al., 2009) used JIT

compilation to generate CUDA code from SBML and execute it

on an Nvidia GPU. libRoadRunner and the Stochastic Simulation

Compiler (SSC) (Lis et al., 2009) both compile dynamic network-

model specifications into executables, SSC focusing on stochastic

simulation of rule-based models and libRoadRunner on SBML-

specified models. libRoadRunner supports execution of a broad

range of SBML models on CPUs using a custom-built JIT compiler

(based on the LLVM JIT compiler framework (Lattner and Adve,

2004)) which translates SBML into highly-optimized executable

code for a broad range of processors. LLVM-based compilers are

small, so all JIT operations occur in memory, without external file

or compiler access, ensuring fast, self-contained simulations and a

relatively small distribution package.

Capabilities libRoadRunner supports time-course simulation of

deterministic and stochastic models. It also supports steady

state analysis, stability analysis and structural analysis of the

stoichiometry matrix (Reder, 1988). libRoadRunner supports almost

the entire SBML L3V1 specification, including composite model

composition and the distribution package. Its lacks support only for

delay equations and non-linear algebraic rules.

Portability Because new hardware platforms appear frequently, a

modern simulator must be portable. libRoadRunner has no run-time

dependencies beyond standard system libraries and it supports any

processor LLVM supports. LLVM future-proofs libRoadRunner,

ensuring that we need not change the front end of the compiler

to support new processor architectures. libRoadRunner is written

in C++, so it interfaces easily with other C++-based software.

libRoadRunner also provides a C language wrapper for cross-

language support, and uses SWIG (Beazley , 1996) to provide a

customized native-Python API. The use of SWIG will allow future

support for additional native language bindings, such as JavaScript,

R, or Octave, depending on demand.

Extensibility libRoadRunner’s modular design is easy to maintain

and extend. All top-level components, such as solvers and

integrators, interact via well-defined boundaries (pure virtual

interfaces) to reduce inter-component dependencies and hide their

internal details. A new solver needs only to implement a standard

interface to function as part of the library, so adding a solver requires

no modification of pre-existing code.

Systems Biology Markup Language as a Declarative

Language

SBML (Hucka et al., 2003) is a declarative specification format

for network models. Because of its history, SBML terminology

derives from biochemistry and includes common biochemical-

reaction abstractions like reaction steps, compartments and reaction

rate laws, though it can describe any model of form:

d

dt
x(t) = f(x(t),p), (1)

where x is the state vector of the model, and p is a vector of time-

independent parameters.

SBML-specified models can also include events, discontinuous

state changes, which trigger under specified conditions. libRoad-

Runner correctly handles SBML-specified events and extends the

SBML specification by allowing an SBML event to call an arbitrary

user-defined function.

Declarative specification languages, like SBML, define component

objects and their interactions, rather than defining procedural

control flow (i.e., the sequence in which computational operations

proceed on execution). An SBML specification lists only the

network component objects, their interactions and rate relations and

events which change these interactions and rates, all of which are

intrinsic abstractions in SBML. Thus, an author writing a model

specification in SBML can focus on the underlying biology or

chemistry of the model rather than on how to implement the model

as a simulation. Since SBML does not specify the computational

operations to implement a model, the control flow, the solvers to

use, or how to store the model’s elements, an SBML compiler

or interpreter must generate them appropriately from the SBML

specification. Thus, compiling an SBML model specification is

more complex than compiling a functionally-equivalent model

specification in a procedural language.

SBML model specifications are easier to share than procedural

specifications of equivalent models because they are not impl-

ementation dependent; any of the numerous SBML compliant

tools can process any SBML model specification. This portability

allows model archiving (e.g., in exchange repositories such as

BioModels (Le Novere et al., 2006) and reuse and the relatively

simple assembly of multiple SBML-specified submodels into larger

models. It also simplifies the scientific validation of SBML-

specified models and ensures that SBML-specified models remain

usable, even if the specific software tools that generated them fall

out of use.

2 ARCHITECTURE

libRoadRunner is a self-contained, easily embedded library with

an object-oriented API natively accessible in C, C++ and Python

(SWIG allows easy extension to other languages). libRoadRunner’s

component-oriented design specifies a small number of standardized

software interfaces (protocols) and how they interact, implemented

using standard C++ data types. Component-orientation separates the

implementation of a component from its interface, so components

are easy to add or replace and component swapping requires

no changes to existing code. E.g., we can add new integrators,

steady-state solvers or SBML compilers to the libRoadRunner

library via the Integrator, SteadyStateSolver and

2

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on July 8, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

ExecutableModel interfaces respectively. libRoadRunner incl-

udes three implementations of the Integrator interface: two

deterministic integrators (one based on the CVODE integrator

from the Sundials suite (Hindmarsh et al., 2005) and the other

a standard fourth-order Runge-Kutta method) and a standard

Gillespie Direct Method SSA stochastic integrator (Gillespie,

1977). libRoadRunner implements the SteadyStateSolver

interface as a class which uses the NLEQ (Nowak and Weimann,

1991) solver, and we are currently developing additional methods.

libRoadRunner implements the ExecutableModel interface

as a class which uses our SBML-to-CPU JIT compiler (see

§ 3). libRoadRunner statically links to the third-party libraries

LLVM (Lattner and Adve, 2004), libSBML (Bornstein et al.,

2008), CVODE, NLEQ2, LAPACK (http://www.netlib.

org/lapack/) and POCOOCO (http://pocoproject.

org/).

3 SBML-TO-CPU-EXECUTABLE COMPILATION

LibRoadRunner’s SBML JIT compiler compiles SBML models in

the form of strings to executable native machine code, in memory.

Compilation follows the canonical compiler phases (Aho et al.,

1986): (1) lexical analysis, (2) syntactic analysis, (3) semantic

analysis, (4) intermediate code generation, (5) code optimization,

and (6) native code generation. Standard generic libraries can

perform phases 1, 2, 5 and 6. However, semantic analysis (phase

3) is specific to the source language.

In phases 1 and 2, the compiler reads the source text, parses

it, and extracts and converts the text’s syntactic information into

an abstract syntax tree (AST) data structure. Each node in the

AST is an essential construct such as an operator, symbol, literal

or function call. Most SBML simulators use components of the

libSBML (Bornstein et al., 2008) library to perform lexical and

syntactic analyses of SBML model specifications.

In phases 3 and 4, the compiler reads the AST and assembles

it into a sequence of intermediate language (IL, a machine-

independent assembly language) instructions, which form a

procedural instantiation of the SBML model specification.

CPUs cannot execute IL programs directly, so phases 5 and 6

optimize the IL (by removing redundant operations, optimizing

memory layout,...) and convert it into executable machine code.

libRoadRunner uses components of the LLVM library for phases

5 and 6.

After the completion of phases 1-6, the JIT compiler returns the

executable code in the form of a list of callable functions to the

calling program.

During phase 3 (semantic analysis), the compiler must map

language symbols to memory address locations. The compiler of a

procedural language, such as C, allocates a memory location to each

symbol (e.g., a variable or function declaration), and resolves that

symbol to that location whenever the source code references that

symbol. Procedural-language compilers map symbols to memory

locations using a symbol table data structure. SBML has no

construct for creating new variables or eliminating variables at run-

time, so the compiler can compute the exact memory requirements

for all symbols and store the symbols in a contiguous memory block.

At run-time, during a time-series computation, the libRoadRunner

library connects a JIT-compiled function to an integrator, which, in

turn, calls a function which calculates the rate of change of the state

vector. Since both the state vector and the rate of change occupy

contiguous memory blocks and have the same layout as the SBML

model variables, the calls pass only two pointers and require no

memory copying or rearrangement.

However, compilation of SBML poses challenges. SBML model

specifications may define rules which state that an expression should

replace a specified symbol, or a rate rule which specifies a rate of

change of the value of a symbol, rather than the symbol value itself.

SBML also allows different rules to apply in different contexts, such

as special rules which only apply when the model is loaded (initial

assignment rules). Mapping symbol names to memory locations is

not one-to-one so a symbol table is insufficient to store the mapping.

Some SBML model simulators allocate storage space for both

normal and rule-defined symbols and use auxiliary functions to

evaluate the rules at run-time as the symbols are read. However, this

approach wastes memory storing symbols which resolve to other

symbols and complicates execution, as the run-time must keep track

of rule dependencies.

Our solution is to extend the symbol table into a symbol forest,

a hash table which maps symbol names to ASTs describing all

the symbols’ rules. The SBML compiler uses the symbol forest

much as a procedural-language compiler uses a symbol table, to

resolve symbol names to memory locations. However, the symbol

forest must apply any rules which relate symbols to determine the

memory location for a given symbol. E.g., if the symbol x has the

assignment rule x → y + 1, whenever the compiler references

symbol x, the symbol forest will find the rule, generate a sequence

of IL instructions which both implement the right hand side (RHS)

of the rule and create a temporary variable to store the result of

the rule calculation. The symbol forest then stores this sequence of

IL instructions and returns the memory location of the instruction

sequence to the compiler. Later in compilation, the LLVM code

generator translates these IL instructions into an executable, which

calculates and returns the value of the symbol at run-time. The

symbol forest resolves automatically recursive rules in which the

symbols in the RHS of a rule depend on other rules.

Naı̈vely generating IL expansions of the rule definitions inline

and creating temporary variables for rule evaluation would generate

redundant instructions which would slow both compilation and

execution. libRoadRunner’s scoped symbol cache reduces such

redundancy. Many functions in libRoadRunner do not modify

SBML-defined parameters and variables during function execution,

so any rules depending on these parameters and variables need

evaluation only once during a given call to these functions. Even if

the rule involves a condition, e.g., x → {b if (a > 1) else c), if the

function does not change the values of a, b and c, the function needs

to evaluate the rule to obtain the value of x only once per call. The

SBML compiler therefore generates code which evaluates the rule

whenever the function is called and stores the result in a temporary

variable. During a call to the function, the first reference to the

symbol evaluates the rule and caches its result, and any subsequent

references to that symbol during the function call reference the

cached value. Using a scoped symbol cache reduces memory usage

and execution time, typically by a factor of 10 for large models.

When JIT-compiled functions contain conditional branches which

contain rules, the SBML compiler generates redundant IL code,

which slows compilation (which scales as the size of the IL code)

but has no speed cost at execution. If the compiler examined

3

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on July 8, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

all possible branches, determined what rules were present, and

created temporary variables to contain the results of the rule

evaluations, it would reduce the size of the resulting IL code,

speeding compilation. However, slower execution would offset the

faster compilation, since the executable would evaluate all rules in

all branches, not only those which it needed. We may add a compiler

directive to allow the user to choose the second option in a future

release of libRoadRunner.

4 RESULTS

Performance

Simulation engines which interpret SBML models (Romer et al.,

1996), are inherently slower, sometimes much slower, than engines

which generate and execute complied code. libRoadRunner uses JIT

compilation to generate particularly fast simulations.

We benchmarked libRoadRunner and Jarnac (Sauro and Fell,

2000), a popular interpreter-based network simulator, for a variety

of network model types (see Table 1 and supplementary materials

Table S.1). libRoadRunner’s faster execution speed is particularly

evident when solving large models, such as BIOMOD14 (Table

1), a mass-action model including a large number of states. We

also checked the scaling of the execution time (t) in the number

of replicas (N) of a Brusselator model, approximating the use

of libRoadRunner in a virtual-Tissue simulation with thousands

of cells, with each cell including its own replica of an SBML-

specified network model. The run time for libRoadRunner scales

as t ∼ N , while the run time for Jarnac scales as t ∼ N2.6 (see

supplementary materials figure S.2). Thus libRoadRunner is more

suitable than Jarnac for use in Virtual-Tissue simulations or other

simulations requiring many replicas of one or more networks. The

supplementary materials present the full benchmark comparisons.

Simulation speed depends on the performance of both the

state-vector rate calculation and the numeric integrator. Since

we cannot separate these calculations in most SBML-model

packages, we also compared an SBML model JIT-compiled using

libRoadRunner with a hard-coded C++ version of the same

model. The model implemented 1000 instances of a Hofmeyr-

Cornish-Bowden unimolecular reaction, in which a single substrate

reversibly goes to a single product (S → P) at a rate of (Sauro,

2012; Hofmeyr and Cornish-Bowden, 1997):

Vm

(

S

Km1

)(

1−
Γ

Keq

)(

S

Km1

+
P

Km2

)h−1

1 + (M/k)h

1 + σ(M/k)h
+

(

S

Km1

+
P

Km2

)h
.

On a 64-bit Linux system, using the clang C++ compiler, execution

of 1000 to 15,000 time steps using the JIT-compiled SBML model

and the hard-coded C++ specification took the same time, showing

that the flexibility of libRoadRunner does not entail any significant

speed cost.

Python Bindings

libRoadRunner’s Python API employs a simple, concise object

model, and follows the style and conventions of the widely-

used SciPy library for ease of learning. The API provides high

performance, low-overhead access to the libRoadRunner library.

Run Time Total Time

Jarnac/ Jarnac/

Model Name libRoadRunner libRoadRunner

Jana Wolf 4.30 2.08

BIOMOD14 311 3.98

BIOMOD33 3.14 0.35

Brusselator500 22875 225
Table 1. Ratios of Jarnac and libRoadRunner run times and total execution

times (including loading) for selected network models (See supplementary

materials for full benchmark data)

The API only communicates using standard Python data types such

as lists, dictionaries and NumPy arrays, which simplifies integration

with existing applications. The NumPy array type is a data structure

which wraps a Python interface around a standard C numeric array.

Even large NumPy arrays have low overhead, since they return only

pointers to internal arrays owned by the libRoadRunner library, with

no copying of memory.

To provide the functionality of the Pandas (http://pandas.

pydata.org) DataFrame object, libRoadRunner extends the

NumPy array to contain row and column name information, to

support access to rows and columns by name, and to format this

name information for console output. Unlike the Pandas DataFrame,

which replaces the Numpy array and requires conversion to work

with Python and Numpy functions, the libRoadRunner array is

a standard Numpy array which any SciPy function can use. The

libRoadRunner array requires only a single line to display the

components and interaction names in the stoichiometry matrix:

print(r.getFullStoichiometryMatrix())

J0, J1, J2, J3, J4

S1 [[1, -1, 0, 0, 0],

S2 [0, 1, -1, 0, 0],

S3 [0, 0, 1, -1, 0],

S4 [0, 0, 0, 1, -1]].

Running a libRoadRunner simulation only requires loading a model

and calling a simulation method. Defaults preset the time spans and

number of points a simulation generates. By default, the simulate

method returns time in the first column and all floating model

species in additional columns:

r = RoadRunner("glycolysis.sbml")

m = r.simulate(plot=True)

Here m is a NumPy array, and the optional plot=True argument

to the simulate method calls the standard plotting library,

matplotlib, to display a basic time-series plot of the simulation

results. Optional arguments can customize the simulation, e.g.,

to generate a 100 data-point time series for parameter “p” and

concentration “S1” from an SBML-specified model between times

t = 0 and t = 12, we specify:

r = RoadRunner("glycolysis.sbml")

m = r.simulate(0, 12, 100, [’time’, ’p’, ’[S1]’])

A variety of other built-in symbols access reaction rates, rates

of change, eigenvalues, etc.. Like a MATLAB top-level function,

the libRoadRunner simulate method provides a consistent

front end to all libRoadRunner’s integration engines. Since

MATLAB is familiar to many scientists, the MATLAB-like

4

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on July 8, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

architecture reduces the effort to learn the libRoadRunner API. To

simplify generation of simulation documentation, libRoadRunner

methods support internal pydoc strings, which interactive

Python environments such as IPython or Tellurium (http://

tellurium.analogmachine.org/) make available as pop-

up hints.

The libRoadRunner API uses dynamic Python object properties

to simplify access to SBML model values. Loading an SBML-

specified model via libRoadRunner automatically adds the SBML

model’s symbol names to the RoadRunner object, allowing

dynamic introspection and modification of the object. If a model

contains parameters and species ’x’, ’y’, ’S1’, ’S2’, the

RoadRunner object will include these names as properties, which a

user can read or set. E.g.,

load a model that has ids ’x’, ’y’ and ’S1’

r = RoadRunner(’some_model.xml’)

r.x = 1.5 # set the ’x’ parameter to 1.5

r.y = 2.0 # set the ’y’ parameter to 2.0

print(r.S1) # print the ’S1’ species concentration

Support for Analysis

The C# roadrunner package inspired libRoadRunner, which inherits

many of roadrunner’s analysis functions, including: methods to

calculate scaled and unscaled control coefficients, elasticities,

sensitivity to changes in all parameters, including conserved

quantities, eigenvalues and eigenvectors and stoichiometric

quantities like the Link and K matrices (Reder, 1988). libRoadRunner

can also compute frequency responses to generate Bode plots.

Identification of Conserved Quantities

Many biochemical network computations require identification

of conserved quantities (moieties in biochemical usage) and

elimination of linearly-dependent species to avoid inversion

of singular Jacobian matrices (Vallabhajosyula et al., 2006).

libRoadRunner implements a libSBML plug-in which performs

this reduction on SBML Document objects, first identifying

conserved quantities and dependent species, then adding the

conserved quantities to the document as set of global parameters and

replacing the dependent species with assignment rules. The user can

modify these conserved quantities, which behave as parameters, to

investigate their effect on the dynamics of the model.

5 USE CASES

libRoadRunner’s ease of use, ability to handle complex SBML

models and fast model execution speed have led to its rapid adoption

in a variety of applications.

The Tellurium Interactive Network Solver

Tellurium is a cross-platform integrated Python environment

based on the Spyder IDE (http://code.google.com/p/

spyderlib/). Tellurium combines libRoadRunner, libSBML,

Antimony (Smith et al., 2009), libSEDML (http://libsedml.

sourceforge.net/libSedML) and other packages to provide

a comprehensive development and analysis environment for

Antimony-specified models. libRoadRunner’s concise syntax and

intuitive Python API are essential to Tellurium’s support for

interactive creation, simulation and analysis of dynamic network

models.

Integrating SBML-model specifications into Multi-cell

Virtual-Tissue Models simulated in CompuCell3D

CompuCell3D (CC3D), a simulation environment for multi-scale,

multi-cell virtual-tissue model development and simulation, was the

first tool to adopt libRoadRunner as a core engine. CC3D defines a

cell object class and behavior methods to allow cell objects to grow,

divide, die, secrete/absorb chemicals, move, etc.... libRoadRunner

integration with CC3D allows the state of an SBML-specified model

inside a cell object to control the CC3D parameters describing the

cell object’s behaviors, and vice versa.

E.g., in a model of changes in cell-cell adhesion leading to

invasive tumor phenotypes, the CC3D cell objects have a CC3D

parameter adhesion-molecule density, which controls the CC3D

behavior cell-cell adhesion. An SBML-specified model relates the

level of the transmembrane adhesion receptor E-cadherin in each

cell to the cells’ level of β-catenin (Andasari et al., 2012). The

CC3D-model specification uses the libRoadRunner Python API to

connect the CC3D adhesion-molecule density to the SBML-model’s

transmembrane E-Cadherin level. At run-time, libRoadRunner time

evolves the network models inside cells, while a specialized CC3D

engine handles the evolution of the cell objects.

Another use of SBML models in virtual-tissue modeling

is simulation of Delta-Notch patterning during embryonic

development. Delta and Notch are heterophilic transmembrane

receptors whose signaling is mutually inhibitory within a cell. The

level of signaling depends on both the amount of Delta on the

membrane of a cell and the amount of Notch on the surfaces

of neighboring cells and vice versa. Thus, the dynamics of the

signaling network depends not only the model within the cell,

but the cell’s pattern of contacts with neighboring cells and their

levels of Delta and Notch. To model this situation, we create

CC3D cell objects and arrange them in an epithelium (a quasi-2D

sheet). Each cell contains an SBML-specified model that describes

how the cell’s levels of membrane-bound and cytosolic Delta

and Notch change, for a particular input level of transmembrane

Delta and Notch signaling (Swat et al., 2012). A Python layer

uses the libRoadRunner API to calculate the strength of Delta

and Notch signaling each cell experiences from the amount of

Delta on the membrane of each cell, the amount of Notch on

the membrane of each adjacent cell (adjacency is a CC3D model

parameter) and the CC3D model’s area of contact between each pair

of cell neighbors. libRoadRunner then updates cells’ Delta-Notch

signaling and regulatory networks using these signaling strengths

as boundary conditions, while CC3D updates the cell shapes,

positions adjacencies and contact areas. Together, these interactions

produce the checkerboard pattern typical of embryonic Delta-Notch

signaling.

Multi-scale Virtual-Tissue Modeling of Liver Metabolism

The Virtual Liver Network has developed an organ-level model of

human galactose clearance which includes single-cell metabolism

of hepatocytes, the ultra-structure and micro-circulation of hepatic

tissues, and the structure of the entire organ (https://github.

com/matthiaskoenig/multiscale-galactose).

5

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on July 8, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

The liver model includes an SBML-specified model of the

sinusoid, the smallest functional unit of the liver, consisting

of a perfused capillary surrounded by hepatocytes. This model

contains a biochemical network describing galactose metabolism

in individual hepatocytes. Coupling via SBML-specified discretized

transport equations for convection and diffusion results in a model

with several thousand components and interactions. The sinusoid

model uses SBML events to describe the time-varying supply of

galactose to the liver. Accounting for heterogeneity in blood flow

and tissue architecture requires simulation of more than 2 × 105

replicas of the model with varying tissue and flow parameters. This

number of replicas was feasible because of libRoadRunner’s fast

time-series generation and support for variable step sizes, which

dramatically reduced output file size. Using the CVODE solver,

single simulation runs of the liver model take around 5-7 seconds

on RoadRunner, resulting in a total simulation time of 4h for 105

simulations on a cluster with 40 cores. libRoadRunner’s Python

API supported rewrite-free integration of the SBML models into

a complex pre-existing modeling workflow, which included data

management using Django, model annotation using Python bindings

to libSBML, model prototyping using Python bindings to Antimony

and visualization of results using the Python REST interface to

Cytoscape (Shannon et al., 2003) with CySBML and CyFluxViz.

Modeling of Synaptic, Neuronal and Neuron Network

Dynamics in the MEMORY platform

The MEMORY platform (Multi-scale intEgrated Model Of the

neRvous sYstem, formerly EONS (Bouteiller et al., 2008))

simulates the function and dynamics of elements ranging from

single channels or receptors (elementary models), to synapses,

which include many elementary models, to neurons, which

themselves may include a large number of synapses. MEMORY

depends on libRoadRunner’s flexibility and ease of use to assemble

such complex hierarchical models. E.g., an SBML-specified neuron

model may include many SBML-specified synapse models, each

of which includes many SBML-specified neurotransmitter release

and diffusion, AMPA receptor and NMDA-receptor models (both

ionotropic receptors for the glutamate neurotransmitter). Neuronal

models may be large, e.g., representing 10 ionotropic synapses in

a CA1 neuron model (Izhikevich, 2003) requires 73 events, 290

reactions, 414 rules and 1459 parameters, so libRoadRunner’s fast

time-series generation is essential for MEMORY to solve complex

neuronal models quickly.

To ensure that a neuronal model quantitatively predicts biological

functions like membrane potentials or intracellular molecular

concentrations, MEMORY can optimize the model’s parameters

by fitting between multiple simulation and experimental time-

series for characteristics including changes in receptor conductance,

desensitization properties and spiking patterns. MEMORY uses

evolutionary multi-objective optimization (from the EMOO

framework (Bahl et al., 2012)), which requires large numbers of

simulation replicas. E.g., elementary-model optimization of an

NMDA-receptor model with respect to eight distinct experimental

results for dynamical changes in receptor-channel conductance

following paired-pulse stimulation, required 15,000 generations

with 400 individuals per generation, i.e., 6 million simulation

replicas (corresponding to 13,000 hours of simulated time).

libRoadRunner took 66 hours to run the entire optimization on a

400-node computer cluster, orders of magnitude faster than other

SBML simulators (Bouteiller et al., 2015).

6 CONCLUSIONS

libRoadRunner’s speed and ease of integration allow researchers

to solve very large models, include models embedded in multi-

scale systems and run large ensembles of smaller models.

libRoadRunner’s Python API makes simulations easy to learn,

while its C++ and C APIs are attractive to developers wishing

to integrate libRoadRunner capabilities into existing simulation

frameworks. libRoadRunner runs on x86 and ARM architectures

and Windows, Mac OS X, Linux, Raspberry Pi, NVIDIA Jetson

TK1 and adapteva Parallella boards. libRoadRunner’s speed and

ARM support will make tablet-based network applications practical

despite tablets’ relatively slow CPU speeds. libRoadRunner’s

support for inexpensive processor boards such as the Raspberry Pi-

2 allows individual researchers and students to more easily study

cluster parallelization options.

7 FUTURE WORK

Improve Steady-State Solvers libRoadRunner uses the FORTRAN

NLEQ2 nonlinear steady-state solver, which is not thread safe.

Exclusive access locks (mutexes) are on the NLEQ solver which

restricts its use to one thread at a time. To eliminate this restriction,

we plan to add several thread-safe steady-state solvers.

Extensions A suite of extensions to libRoadRunner is under

developed. They include a bifurcation extension and a set of

parameter optimizers.

8 ACKNOWLEDGMENTS

ETS, MHS and JAG acknowledge support from NIH grants

R01 GM077138, U01 GM111243, R01 GM076692 and EPA

RD83500101. MK acknowledges support from the Federal Ministry

of Education and Research (BMBF, Germany) within the Virtual

Liver Network (VLN grant 0315741). JMB acknowledges support

from NIH grants P41 EB001978 and U01 GM104604. HMS

acknowledges support from NIH grant R01 GM081070. The content

is solely the responsibility of the authors and does not necessarily

represent the views of the National Institutes of Health. We

acknowledge Totte Karlsson for the original C# to C++ translation,

C compiler backend and C API, Stanley Gu for testing the library

as a web service, Lucian Smith for developing part of the test

suite, Michael Galdzicki for writing detailed build instructions

and testing for developers. HMS conceived the project and helped

with documentation, design and testing. ETS designed the overall

architecture of the libRoadRunner, developed the LLVM-based JIT

compiler and wrote documentation. We thank Wilbert Copeland for

bug fixing, testing and redesigning the integrator interface. MHS

conducted Linux testing and builds, MK, JAG and JMB tested the

code in simulations. KM ported the code to ARM processors and

carried out the performance testing. We thank Holly Sawyer for

proofreading the final draft.

6

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on July 8, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

REFERENCES

Ackermann, J., Baecher, P., Franzel, T., Goesele, M., et al. (2009). Massively-parallel

simulation of biochemical systems. GI Jahrestagung.

Aho, A., Ravi, S. and Ullman, J.D. (1986). Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co.

Andasari, V., Roper, R. T., Swat, M. H. and Chaplain, M. A. (2012). Integrating

intracellular dynamics using CompuCell3D and Bionetsolver: applications to

multiscale modelling of cancer cell growth and invasion. PLoS ONE, 7, e33726.

Bahl, A., Stemmler, M. B., Herz, A. V. and Roth, A. (2012). Automated optimization

of a reduced layer 5 pyramidal cell model based on experimental data. Journal of

Neuroscience Methods, 210, 22–34.

Beazley, D.M. (1996). SWIG: An easy to use tool for integrating scripting languages

with C and C++. In Proceedings of the 4th USENIX Tcl/Tk workshop, pages 129–

139.

Bergmann, F. T. and Sauro, H. M. (2006). SBW - A modular framework for systems

biology. In WSC ’06 Proceedings of the 38th conference on Winter simulation, pages

1637–1645.

Bornstein, B. J., Keating, S. M., Jouraku, A. and Hucka, M. (2008). LibSBML: an API

library for SBML. Bioinformatics, 24, 880–881.

Bouteiller, J.-M.C., Feng, Z., Onopa, A., Huang, M., Hu, E. Y., Somogyi, E.T., Baudry,

M., Bischoff, S. and Berger, T. W. (2015). Maximizing Predictability of a Bottom-

Up Complex Multi-Scale Model through Systematic Validation and Multi-Objective

Multi-Level Optimization. In Proceedings of the 7th International IEEE/EMBS

Conference on Neural Engineering (NER).

Bouteiller, J.-M. C., Baudry, M., Allam, S. L., Greget, R. J., Bischoff, S., and

Berger, T. W. (2008). Modeling glutamatergic synapses: insights into mechanisms

regulating synaptic efficacy. Journal of Integrative Neuroscience, 7, 185–197.

Dräger, L, Palsson, B. O., Chandran, D. and Sauro, H. M. (2009). Improving

Collaboration by Standardization Efforts in Systems Biology Front Bioeng

Biotechnol., 2, 61.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry, 81, 2340–2361.

Griewank, A. (1989). On automatic differentiation. Mathematical Programming: recent

developments and applications, 6, 83–107.

Hester, S. D., Belmonte, J. M., Gens, J. S., Clendenon, S. G. and Glazier, J. A. (2011).

A multi-cell, multi-scale model of vertebrate segmentation and somite formation.

PLoS Computational Biology, 7, e1002155.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker,

D. E. and Woodward, C. S. (2005). SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers. ACM Transactions on Mathematical

Software (TOMS), 31(3), 363–396.

Hofmeyr, J.-H. S. and Cornish-Bowden, A. (1997). The reversible hill equation: how

to incorporate cooperative enzymes into metabolic models. Computer applications

in the biosciences: CABIOS, 13, 377–385.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu,

L., Mendes, P. and Kummer, U. (2006). COPASI—a complex pathway simulator.

Bioinformatics, 22, 3067–3074.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H. and

Arkin, A.P. (2003). The systems biology markup language (SBML): a medium

for representation and exchange of biochemical network models. Bioinformatics,

19, 524–531.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on

Neural Networks, 14, 1569–1572.

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,

Assad-Garcia, N., Glass, J. I. and Covert, M. W. (2012). A whole-cell computational

model predicts phenotype from genotype. Cell, 150, 389–401.

Keller, R., Dörr, A., Tabira, A., Funahashi, A., Ziller, M. J., Adams, R., Rodriguez,

N., Novère, N. L., Hiroi, N., Planatscher, H., Zell, A. and Dräger, A. (2013). The

systems biology simulation core algorithm. BMC Systems Biology, 7, 55.

Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong program

analysis & transformation. In Code Generation and Optimization 2004, pages 75–

86. IEEE.

Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H.,

Li, L., Sauro, H., Schilstra, M., Shapiro, B., et al. (2006). Biomodels database:

a free, centralized database of curated, published, quantitative kinetic models of

biochemical and cellular systems. Nucleic acids research, 34 (suppl 1), D689–D691.

Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least

Squares The Quarterly of Applied Mathematics, 2, 164–168.

Lis, M., Artyomov, M.N., Devadas, S. and Chakraborty, A.K. Efficient stochastic

simulation of reaction–diffusion processes via direct compilation Bioinformatics,

275, 2289–2291.

Machné, R., Finney, A., Müller, S., Lu, J., Widder, S. and Flamm, C. (2006). The

SBML ODE solver library: a native API for symbolic and fast numerical analysis of

reaction networks. Bioinformatics, 22, 1406–1407.

Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters

Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

Moraru, I. I., Morgan, F., Li, Y., Loew, L. M., Schaff, J. C., Lakshminarayana, A.,

Slepchenko, B. M., Gao, F. and Blinov, M. L. (2008). Virtual Cell modelling and

simulation software environment. IET Systems Biology, 2, 352–362.

Myers, C. J., Barker, N., Jones, K., Kuwahara, H., Madsen, C. and Nguyen,

N. P. (2009). iBioSim: a tool for the analysis and design of genetic circuits.

Bioinformatics, 25, 2848–2849.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization.

Bioinformatics, 7, 2848–2849.

Nowak, U. and Weimann, L. (1991). A family of Newton codes for systems of highly

nonlinear equations. Technical Report TR-91-10, ZIB, Konrad-Zuse-Zentrum fr

Informationstechnik Berlin. ZIB Technical Report.

Olivier, B. G., Rohwer, J. M. and Hofmeyr, J. H. (2005). Modelling cellular systems

with PySCeS. Bioinformatics, 21, 560–561.

Reder, C. (1988). Metabolic control theory: a structural approach. Journal of

Theoretical Biology, 135, 175–201.

Reynolds, D. R., Woodward, C. S., Gardner, D. J. and Hindmarsh, A. C. (2014).

ARKode: A library of high order implicit/explicit methods for multi-rate problems.

In SIAM Conference on Parallel Processing for Scientific Computing.

Romer, T. H., Lee, D., Voelker, G. M., Wolman, A., Wong, W. A., Baer, J.-L., Bershad,

B. N. and Levy, H. M. (1996). The structure and performance of interpreters. ACM

SIGPLAN Notices, 31, 150–159.

Sauro, H. M. (1993). SCAMP: a general-purpose simulator and metabolic control

analysis program. Bioinformatics, 9, 441–450.

Sauro, H. M and Bergmann, F. T Software Tools for Systems Biology. In Liu and

Lauffenburger, Systems biomedicine. Academic Press. 289–312

Sauro, H. M. (2012). Enzyme Kinetics for Systems Biology. 2nd Edition, Ambrosius

Publishing.

Sauro, H. M. (2014). Systems Biology: An Introduction to Pathway Modeling.

Ambrosius Publishing.

Sauro, H. M. and Fell, D. A. (2000). Jarnac: a system for interactive metabolic analysis.

In Animating the Cellular Map: Proceedings of the 9th International Meeting on

BioThermoKinetics, pages 221–228. Stellenbosch University Press.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin,

N., Schwikowski, B. and Ideker, T. (2003). Cytoscape: a software environment

for integrated models of biomolecular interaction networks. Genome research, 13,

2498–2504.

Smith, L. P., Bergmann, F. T., Chandran, D. and Sauro, H. M. (2009). Antimony: a

modular model definition language. Bioinformatics, 25, 2452–2454.

Storn, R. and Price, K. (1987). Differential evolution - a simple and efficient heuristic

for global optimization over continuous spaces Journal of Global Optimization, 11,

341–359.

Straume, M. and Johnson, M. L. (1992). Monte Carlo method for determining complete

confidence probability distributions of estimated model parameters Methods

Enzymology, 210, 117–129.

Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D. and Glazier,

J. A. (2012). Multi-Scale Modeling of Tissues Using CompuCell3D. In Methods in

Cell Biology, pages 325–366. Elsevier.

Takizawa, H., Nakamura, K., Tabira, A., Chikahara, Y., Matsui, T., Hiroi, N., and

Funahashi, A. (2013). LibSBMLSim: a reference implementation of fully functional

SBML simulator. Bioinformatics, 29, 1474–1476.

Vallabhajosyula, R. R., Chickarmane, V. and Sauro, H. M. (2006). Conservation

analysis of large biochemical networks. Bioinformatics, 22, 346–353.

7

 at C
haritÃ

©
 - U

niversitaetsm
edizin B

erlin on July 8, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

