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Abstract

The COMBINE consortium is an initiative to coordinate the development of community standards
and formats for computer models in biology and medicine. COMBINE members organize COM-
BINE as an annual conference at varying places. This conference is aimed at scientists at all career
levels interested in using and developing these standards. It also provides a platform for exchange,
discussion, and interactive experimentation and learning.
From September 1 to 5, the COMBINE 2024 conference took place at the University of Stuttgart,
Campus Stuttgart-Vaihingen. The event was held as an in-person workshop-style event with the
opportunity for remote participation during break-out sessions to enable broad community partic-
ipation. COMBINE 2024 has taken place as a satellite event of the Virtual Physiological Human
(VPH) 2024 Conference, which also took place in Stuttgart from September 4-6, 2024. The event’s
co-location was advantageous and promoted exchange and collaboration between the two scientific
networks.
This year’s COMBINE was co-hosted by the Stuttgart Cluster of Excellence EXC2075 “Data-
Integrated Simulation Science (SimTech)”. SimTech is an engineering-driven cluster that develops
and applies multi-scale computational models and simulation schemes in various fields. Develop-
ing standards and workflows to enable and facilitate seamless management, exchange, and reuse
of models and data is an important topic in the cluster. Moreover, the development of research
software and strategies for long-term maintenance for the community are intensively discussed
in the cluster across different communities and application fields. We believe that the long-term
maintenance of models and computational tools and, along with this, a broad usage requires com-
munity efforts. In this respect, we see the COMBINE consortium as a successful role model in the
Systems Biology field. On the other hand, SimTech researchers have also successfully developed
software tools, e.g., for model coupling (preCICE) or efficient simulations of engineering-driven
models and multi-scale models (Dynamore) and in biocatalysis (EnzymeML). The idea was to en-
able an exchange between COMBINE and SimTech and lively discussions, which worked out nicely.
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1 Invited talks 1

1.1 The EnzymeML framework: improving efficiency and quality of biocatalytic 2

science 3

Jürgen Pleiss, Jan Range, and Max Häußler, University of Stuttgart, Germany 4

5

Biocatalysis is entering a promising era as a data-driven science. High-throughput experimen- 6

tation generates a rapidly increasing stream of biocatalytic data, which is the raw material for 7

mechanistic and data-driven modeling to design improved biocatalysts and bioprocesses. How- 8

ever, data management has become a bottleneck to progress in biocatalysis. In order to take 9

full advantage of rapid progress in experimental and computational technologies, biocatalytic data 10

should be findable, accessible, interoperable, and reusable (FAIR). The EnzymeML framework 11

(https://github.com/EnzymeML) provides reusable and extensible tools and a standardized data 12

exchange format for FAIR and scalable data management in biocatalysis (Range et al., 2022). 13

To enable storage, retrieval, and exchange of enzymatic data, the XML–based markup language 14

EnzymeML has been developed (Pleiss, 2021). An EnzymeML document contains information 15

about reaction conditions and the measured time course of substrate or product concentrations. 16

Kinetic modelling is performed by uploading EnzymeML documents to the modelling platforms 17

COPASI or PySCeS or by using the JAX platform. The rate equation and the estimated kinetic 18

parameters are then added to the EnzymeML document. The EnzymeML document containing 19

the experimental and the modelling results is then uploaded to a Dataverse installation or to the 20

reaction kinetics database SABIO-RK. The workflow of a project is encoded as Jupyter Notebook, 21

which can be re-used, modified, or extended The feasibility and usefulness of the EnzymeML tool- 22

box was demonstrated in six scenarios, where data and metadata of different enzymatic reactions 23

are collected, analysed, and uploaded to public data repositories for future re-use (Lauterbach 24

et al., 2023). FAIRification of data and software and the digitalization of biocatalysis improve the 25

efficiency of research by automation and guarantee the quality of biocatalytic science by repro- 26

ducibility4. Most of all, they foster reasoning and creating hypotheses by enabling the reanalysis 27

of previously published data, and thus promote disruptive research and innovation. 28

1.2 Reproducible digital twins for personalized liver function assessment 29

Matthias König, Humboldt-University Berlin, Germany 30

31

Essential prerequisites for the practical application and translation of computational models 32

include: (i) reproducibility of results; (ii) model reusability and extensibility; (iii) data availability; 33

and (iv) strategies for model stratification and individualization. Here, we present a modeling work- 34

flow built around these foundational prerequisites, with a focus on liver function tests. Despite the 35

paramount significance of liver function assessment in hepatology, reliable quantification remains 36

a clinical challenge. Dynamic liver function tests offer a promising method for non-invasive in vivo 37

assessment of liver function and metabolic phenotyping. By leveraging whole-body physiologically- 38

based pharmacokinetic (PBPK) models, we’re simulating these tests and positioning PBPK models 39

as digital twins for metabolic phenotyping and liver function assessment. To develop and validate 40

our models, we established the open pharmacokinetics database, PK-DB, containing curated data 41

from 600+ clinical studies (Grzegorzewski et al., 2021b; Grzegorzewski et al., 2021a). Our models 42

are individualizable and stratifiable, enabling simulation of lifestyle factors and co-administration 43

effects on drug metabolism. Our models have been instrumental in clinical scenarios: from predict- 44

ing individual outcomes post-hepatectomy (Köller et al., 2021b; Köller et al., 2021a) to discerning 45

the impact of CYP2D6 gene variants on liver function tests (Grzegorzewski et al., 2022). These 46

models are constructed hierarchically, describing metabolic and other biological processes in organs 47

like the liver and kidneys, seamlessly integrated with whole-body physiology. Notably, all models 48

and data are readily available and reproducible for reuse, encoded in the Systems Biology Markup 49

Language (SBML) (Keating et al., 2020). We will provide an overview of these PBPK models 50

and demonstrate how SBML and FAIR principles can facilitate model development, coupling, and 51

reuse. 52

1.3 preCICE – A General-Purpose Simulation Coupling Library 53

Benjamin Uekermann, University of Stuttgart, Germany 54

55
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preCICE (https://precice.org/) is an open-source coupling software for partitioned multi- 56

physics and multi-scale simulations including PDE-PDE and PDE-ODE coupling. Thanks to 57

the software’s library approach (the simulations call the coupling) and its high-level API, only 58

minimally-invasive changes are required to prepare an existing (legacy) simulation software for 59

coupling. Moreover, ready-to-use adapters for many popular simulation software packages are 60

available, e.g. for OpenFOAM, SU2, CalculiX, FEniCS, and deal.II. For the actual coupling, 61

preCICE offers methods for fixed-point acceleration (quasi-Newton acceleration), fully parallel 62

communication (MPI or TCP/IP), data mapping (radial-basis function interpolation), and time 63

interpolation (waveform relaxation). Today, although being an academic software project at heart, 64

preCICE is used by more than 100 research groups in both academia and industry. In this presen- 65

tation, I introduce the basic concepts of preCICE and discuss existing and potential applications 66

in biology. 67

1.4 Improving Curation: Biomodels and Annotation 68

Lucian Smith, Herbert Sauro, John Gennari, David Nickerson, S. Malik-Sheriff Rahu- 69

man, V. N. Nguyen Tung, University of Washington, USA 70

71

The BioModels Database has over 1000 curated models from published papers. Curators at 72

the EBI ensure that the model can be used to reproduce at least one figure from the paper, and 73

extensively annotate the model as well. However, until the advent of SED-ML, it was impossible to 74

store what the curator did to reproduce the model in a standard format, and until more widespread 75

use of SED-ML, it was impossible to reliably validate any SED-ML that was produced. The Center 76

for Reproducible Biomedical Modeling has produced new SED-ML interpreters and validators that 77

have bridged this gap, and we have partnered with the EBI to ‘retro-curate’, as far as possible, the 78

curated branch of BioModels, to include validated SED-ML, which we have then tested using the 79

SED-ML interpreters on multiple simulation engines. In addition, we have extended the Antimony 80

modeling language, and present the Antimony Web Editor, with particular features useful for 81

adding curation of species, reactions, and parameters. 82

1.5 CompuTiX: A library for agent based modeling (not only) at a tissue-scale 83

Jǐŕı Pešek, Jules Dichamp, Peter Kottman, Boulitrop Charles, Dirk Drasdo, INRIA, 84

team SIMBIOTX, France 85

86

In recent years, many studies have shown that the tissue microarchitecture along with the me- 87

chanical environment has a crucial yet poorly understood impact on the biological processes inside 88

living tissues This have a significant impact on progression of any potential disease or treatment. 89

The limitations of in-vivo imaging techniques together with the small scale and isolated nature of 90

many in-vitro experiments, makes these systems a suitable candidate for in-silico approach, where 91

initial in-vitro experiments can be used to formulate and tune the underlying models and in-vivo 92

imaging is then used to generate a patient specific setup. In particular, an agent based models, 93

where the global effect is achieved by interaction between many, relatively simple, entities, are 94

suitable to capture the spatial and behavioral heterogeneity and complexity of living tissues. In 95

this talk we will present a new open-source computational library, CompuTiX, suitable for agent 96

based simulations of tissues, organoids and more. We will split the talk into two parts. In the 97

first part we will briefly introduce basic bio-physical models starting from simple center based 98

models to more complex models like deformable cell model. In the second, more technical, part 99

we will discuss the architecture of the library, design choices, trade-offs and challenges in our goal 100

to provide a versatile and extensible platform for agent based simulations. 101

1.6 MeDaX – two years towards bioMedical Data eXploration 102

Judith AH Wodke, University Medicine Greifswald 103

104

Research based on clinical care data is gaining attention across the world. However, the qual- 105

ity of clinical care data is generally not maximised for research purposes. Instead, according to 106

economic principles, medical staff and time costs are commonly minimised, rendering the enrich- 107

ment with sufficient metadata for easy data reuse at least challenging. In addition, a hetero- 108

geneous landscape of laws concerning medical data reuse on national, state, and county levels 109

make (international) interoperability an ambitious aim. The MeDaX project was initiated about 110
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two years ago and its underlying idea presented at COMBINE 2022: connect and semantically 111

enrich highly diverse clinical and other biomedical data in knowledge graphs (KG) to design, im- 112

plement, and use graph technologies for innovative data exploration. The MeDaX-KG prototype 113

has been designed and implemented building on the BioCypher framework to harmonise biomedi- 114

cal knowledge graphs and using synthetic patient data. The proof of concept pipeline consists of 115

i) a FHIR input adapter, including an optimisation module for the generically generated graph 116

structure, ii) a semi-automatic data schema generation based on the BioLink ontology, and iii) 117

the visualisation of the resulting MeDaX-KG using Neo4j. Currently, the pipeline is improved, a 118

user interface is implemented, and the first pilot in a german university clinic’s data integration 119

center is set up while the first stable release is prepared. To particularly tackle the gaps between 120

the different scientific domains in medical informatics, we got involved in or coordinate several 121

community projects. The international MIRAPIE community project aims to propose a prove- 122

nance standard for biomedicine by defining a MInimal Requirements for Automated Provenance 123

Information Enrichment guideline (https://codeberg.org/MIRAPIE/MIRAPIE). Participating in 124

the BioCypher project, we adopted and are currently adapting the Biomedical Resource Ontol- 125

ogy (BRO) (https://github.com/biocypher/biomedical-resource-ontology) to FAIRify our 126

own software but also to allow the better classification of biomedical data. Within the Medical 127

Informatics Initiative (MII) Germany we are coordinating the FAIRification of the MII core data 128

set (https://github.com/medizininformatik-initiative). In summary, we are aligning sev- 129

eral interdisciplinary efforts towards exploration of high quality clinical care data for biomedical 130

research. 131

1.7 Reproducible tools for dealing with highly variable data 132

Nicole Radde, University of Stuttgart, Germany 133

134

In the biomedical context, data is often sparse, and replicates show a high variability. This 135

is because complex procedures, costs, and ethical aspects constrain measurements. Sparsity and 136

high variability pose a challenge for modeling, especially when building models aiming to capture 137

quantitatively dynamic responses. Here, we present two complementary approaches we developed 138

in our group to deal with sparse and variable data. Bayesian Modeling of Time Series Data (Bay- 139

ModTS) uses a Bayesian approach and a simulation model to process sparse and highly variable 140

serial data (Höpfl et al., 2024). BayModTS can be used to quantify uncertainty in the observed 141

process or as a noise filtering approach, as we will demonstrate with selected examples. Second, 142

Eulerian Parameter Inference (EPI) formulates the parameter estimation problem for a simulation 143

model from experimental data as a stochastic inverse problem and infers a parameter distribution 144

that can reproduce the variability of the input data (Wagner et al., 2024). Both approaches are 145

implemented as documented software packages that use standards such as SBML (Keating et al., 146

2020) or PEtab (Schmiester et al., 2021). In my talk, I will briefly explain our methods and discuss 147

the current challenges regarding reproducibility and FAIR principles from a modeler’s perspective. 148

1.8 The past, present and possible futures 149

Herbert Sauro, University of Washington, USA 150

151

It has almost been 25 years since Hiroaki Kitano initiated the development of SBML as part 152

of the ERATO project. Together with Bolouri, Doyle, Finney, Hucka, myself and a number of 153

key stakeholders (who continue to meet at COMBINE), we published the first draft and software 154

support libraries for the SBML specification. Around the same time we also saw the publication of 155

the specification for CellML that was a more mathematically oriented proposal. What resulted was 156

most unexpected, the emergence of a new vibrant ecosystem which stimulated further development, 157

created a host of new ancillary standards as well as the indispensable BioModels repository. That 158

ecosystem still exists today. In this talk I will review what I feel remains to be done or is incomplete, 159

what new modeling challenges we face, and describe what the center of model reproducibility in the 160

US is doing in terms of software provision. In particular I will describe a number of new client-based 161

web tools and desktop apps. The client-based tools are unusual in that they can be hosted from 162

any free basic server such as a GitHub, Neocities or Cloudflare page. This makes such apps very 163

low maintenance and tend to persist long after funding stops. Examples from our center include a 164

model annotation (AWE) platform, a simple model checking app (ratesb), a high speed BioModels 165

cache, a reproducibility portal, a model verification service, a new SBML/Antimony web utility, 166

a Biosimulators/Biosimulations repository, a new SBML compliant desktop app, a number of new 167
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Python packages for network visualization, a new desktop network editor (Alcuin), new extensions 168

to Antimony (See talk by Lucian Smith), a standard protocol for multi-scale modeling (See talk 169

by Eran Agmon), and the first model credibility hackathon held this summer. 170

1.9 Computational design of biological receivers using multi-scale models and data 171

standards 172

Goksel Misirli, Keele University, UK 173

174

Engineering genetic regulatory circuits that sense external molecules and respond is essential for 175

developing diverse biological applications. As the complexity of designs increases, a model-driven 176

design process becomes desirable to explore large design spaces that involve different biological 177

parts and parameters. Moreover, the amount of these molecules reaching a receiver is usually 178

assumed to be constant, and the diffusion dynamics and the interference caused by late-arriving 179

molecules and the cellular dynamics are often not integrated. Additionally, each molecule type 180

may represent a single biological signal and be unsuitable for encoding and decoding multiple 181

data bits. Here, we present the virtual parts repository, a computational framework that provides 182

modular, reusable and composable models. The framework facilitates automating the design of 183

predictable applications via simulations. It builds on the Systems Biology Markup Language 184

to model cellular behaviour and the Synthetic Biology Open Language to capture the details of 185

genetic circuits. We then extend this automation approach to design the end-to-end transmission 186

of signalling molecules from a transmitter to cellular receivers for multi-bit data communications. 187

The resulting framework can be used to understand the cellular response for a sequence of custom 188

data bits, each representing a group of molecules released from a transmitter and diffusing over a 189

molecular channel. The framework validates and verifies various communication parameters and 190

identifies the best communication scenarios. We also present a novel algorithm to minimise signal 191

interference by employing equalisation techniques from communication theory. Our data standards- 192

enabled and multi-scale modelling workflow combines engineering genetic circuits and molecular 193

diffusion dynamics to encode and decode data bits, design efficient cellular signals, minimise noise, 194

and develop biologically plausible applications. 195

1.10 Networks, simple models and model diversity in the description of biological 196

systems 197

Marc Hütt, Constructor University Bremen, Germany 198

199

My talk will address three distinct, but interrelated, topics: (1) networks as structural models 200

to interpret high-throughput data; (2) the distinction between mathematical models and their 201

computer implementations; (3) simple models vs. complicated, parameter-rich models. 202

Systems biology and systems medicine frequently use network-based strategies for data inter- 203

pretation and data contextualization. These methods, at times, lack standardization and compara- 204

bility. Here I briefly discuss, how such methods work, and which implicit hypotheses are associated 205

with them. 206

The formal representation of a mathematical model is often incomplete, compared to the de- 207

tails required for an implementation of the model to run numerical simulations. Implementation 208

differences can in principle lead to drastically different results. For the case of models of ex- 209

citable dynamics, I illustrate this point, showing that even the simplest models can display such 210

implementation differences. 211

Lastly, residing on the topic of simple models, I briefly draw the attention to the co-existence of 212

parameter-rich and simple models of biological systems, outlining a few pros and cons and caveats. 213

2 Lightning Talks 214

2.1 Computational Model Development Using SBML: sbmlutils, sbm4humans, cy3sbml215

Matthias König, Humboldt-University Berlin, Germany 216

217

The Systems Biology Markup Language (SBML) (Keating et al., 2020) is recognized as the 218

standard framework for representing and exchanging complex mathematical models in biological 219
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systems research. SBML facilitates the depiction of a diverse array of biological phenomena, encom- 220

passing metabolic networks, signaling pathways, and regulatory networks. It is versatile enough 221

to handle models ranging from simple individual processes to intricate multi-scale representations. 222

One of the primary challenges faced by newcomers in computational biology is the encoding 223

and development of ordinary differential equation (ODE) models within the SBML framework. 224

Addressing this hurdle, we introduce two innovative Python tools: sbmlutils (https://github. 225

com/matthiaskoenig/sbmlutils), sbml4humans (https://sbml4humans.de), and the Cytoscape 226

application cy3sbml (https://github.com/matthiaskoenig/cy3sbml). These tools collectively 227

streamline the process of SBML model creation, enhancing both the programmatic aspect and 228

the user experience. Specifically, sbmlutils facilitates the programmatic construction of SBML 229

models, while sbml4humans generates user-friendly reports for model interpretation. Furthermore, 230

cy3sbml integrates with Cytoscape to offer advanced visualization capabilities, thereby augmenting 231

the comprehension and analysis of SBML-encoded models. 232

These advancements significantly contribute to the ease of SBML model development and 233

interpretation, fostering greater accessibility and understanding for those entering the field of 234

computational systems biology. 235

2.2 Utilizing Nix for rapid BayModTS development 236

Simon Hauser and Fritz Otlinghaus, Helsinki Systems, Germany 237

238

BayModTS, a Python project for FAIR Bayesian Modelling of Time Series workflows, has a 239

complex setup that requires users of that software to install and compile multiple Python packages 240

that have native C dependencies (Höpfl et al., 2024). This is a complex endeavor and currently 241

it is not possible to fully resolve these issues using poetry install. We present a solution that 242

utilizes a general purpose package manager called Nix, that guarantees that a package and all 243

its dependencies can be built reproducibly. This package manager can be used to build all kinds 244

of software packages, including C libraries and Python packages, which we need to realize our 245

solution. We utilize prepackaged system and Python dependencies already made available by the 246

Nix community to build new, complex packages, like libsbml, libroadrunner, tellurium, and others, 247

to realize a portable and reproducible local development environment. In the end, we automate 248

our solution by using a well established GitHub continuous integration solution that builds all 249

packages and makes them available via HTTP using a binary cache. This can be used so that 250

packages no longer have to be build locally and can be downloaded from CI instead, improving the 251

onboarding process for new team members and simplifying collaborations for external researchers. 252

2.3 Biological and Biophysics Simulation in Tissue Forge 253

T.J. Sego, University of Florida, USA 254

255

Tissue Forge is open-source simulation software for interactive particle-based physics, chemistry 256

and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore 257

models and virtual experiments based on soft condensed matter physics at multiple scales, from the 258

molecular to the multicellular, using a simple interface. While Tissue Forge is designed to simplify 259

solving problems in complex subcellular, cellular and tissue biophysics, it supports applications 260

ranging from classic molecular dynamics to agent-based multicellular systems with dynamic pop- 261

ulations. Tissue Forge users can build and interact with models and simulations in real-time and 262

change simulation details during execution, or execute simulations off-screen and/or remotely in 263

high-performance computing environments. Tissue Forge provides a growing library of built-in 264

model components along with support for user-specified models during the development and appli- 265

cation of custom, agent-based models. Tissue Forge includes an extensive Python API for model 266

and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as 267

well as C and C++ APIs for integrated applications with other software tools. Tissue Forge sup- 268

ports installations on Windows, Linux and MacOS systems and is available for local installation 269

via conda. The talk complements a tutorial at COMBINE 2024 that intends to introduce the basic 270

concepts, modeling and simulation features, and some relevant modeling applications of Tissue 271

Forge through guided simulation scripting. 272
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2.4 A COMBINE Standard for Multi-Approach Multi-Scale (MAMS) Modelling 273

Sheriff Rahuman, EMBL-EBI, UK, and T.J. Sego, University of Florida, USA 274

275

Multi-approach Multi-scale (MAMS) modelling represents a cutting-edge method for modelling 276

and analysis of biological systems, leveraging an integrated suite of diverse modelling frameworks. 277

This multi-approach modelling will encompass a combination of diverse modelling formalisms, such 278

as ordinary differential equations (ODE), partial differential equations (PDE), logical, constraint- 279

based, and agent-based models across multiple scales. These models are intricately tied together 280

to facilitate complex simulations. During the dedicated breakout sessions at Harmony 2021, COM- 281

BINE 2021, and HARMONY 2024, we delved into the existing state-of-the-art technologies and 282

standards, including SBML and SED-ML, and their support for multi-approach modelling. These 283

discussions also illuminated the current challenges and gaps within the field. For COMBINE 2024, 284

our objective is to further this conversation by identifying published MAMS models and bringing 285

together the community to enable the creation of novel standards or the enhancement of existing 286

COMBINE standards to support MAMS. This effort aims to foster interoperability and support 287

the rapidly evolving paradigm of MAMS modelling. The talk complements a breakout session at 288

COMBINE 2024 that intends to continue the described work and invite new collaborators to join 289

continuing efforts. 290

2.5 Continuing Work Towards Reproducible Stochastic Biological Simulation 291

T.J. Sego, University of Florida, USA, and Sheriff Rahuman, EMBL-EBI, UK 292

293

Stochastic simulations are commonly used to quantitatively or semi-quantitatively describe the 294

dynamics of biological systems. At various scales and in multiple applications, stochastic simula- 295

tion better reflects observed biological processes and robustness. Various methods are widely used 296

to incorporate stochasticity into biological simulation, such as the Gillespie stochastic simulation 297

algorithm for systems biology modeling, stochastic Boolean networks for network modeling, and 298

the Cellular Potts model methodology for multicellular modeling. Proving reproducibility of sim- 299

ulation results is critical to establishing the credibility of a model. To this end, BioModels, the 300

largest repository of curated mathematical models, tests and reports the reproducibility of simula- 301

tion results for all submitted models when possible. A recent study showed that about 50% of the 302

deterministic ordinary differential equation models on BioModels could not be reproduced when 303

applying criteria for reproducibility to the information provided in their associated publication, 304

reflecting a current crisis of reproducibility. Furthermore, there are no well-accepted metrics or 305

standards for reproducing stochastic simulation results, thus perpetuating the crisis of reproducibil- 306

ity for a broad class of biological models. This lightning talk survey recent progress to establish an 307

accepted framework for testing the reproducibility of stochastic simulations in biological modeling. 308

The talk will provide a brief overview of recent progress towards defining quantitative measures to 309

determine whether stochastic simulation results can be reproduced, and when results have been 310

reproduced. The talk complements a breakout session at COMBINE 2024 that intends to continue 311

the described work and invite new collaborators to join continuing efforts. 312

2.6 Morpheus model repository: Experiences with reproducible multi-cellular mod- 313

els 314

Lutz Brusch, Jörn Starruß, Diego Jahn, and Robert Müller, Technische Universität 315

Dresden, Germany 316

317

Collaborative modeling and simulation become increasingly important for studying self-oganization,318
patterning, morphogenesis and disease processes from the intracellular to the tissue and organ 319

scales. To support collaborations, we have developed the Morpheus model repository (https: 320

//morpheus.gitlab.io/models). This model repository is an open access and citable platform 321

for publishing, sharing and archiving multi-scale and multi-cellular models that are encoded in the 322

model description language MorpheusML (https://doi.org/10.25504/FAIRsharing.78b6a6). 323

We will explore statistics and examples of the usage of the Morpheus model repository. Differ- 324

ent simulators like Artistoo (https://artistoo.net/converter.html) and Morpheus (https: 325

//morpheus.gitlab.io) can process MorpheusML models from the repository. Among them, the 326

model editor and simulator Morpheus is open source and allows to develop multi-scale models in 327

a modular manner and manage the entire workflow through a user-friendly GUI. Moreover, Mor- 328
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pheus is SBML-compliant, supports simulations based on experimental data, e.g. segmented cell 329

configurations, and is integrated with the FitMultiCell toolbox for robust and efficient parameter es- 330

timation of stochastic models (https://gitlab.com/fitmulticell/fit, https://doi.org/10. 331

1093/bioinformatics/btad674). Importantly, the strict separation of the model description in 332

MorpheusML from any solver code allows to readily reproduce model results locally in different (fu- 333

ture) versions of the simulation software. Beyond reproduction of published results, MorpheusML 334

models can easily be extended (copy-paste parts between models) and merged among each other, 335

thus vitalizing model reuse and exchange. 336

2.7 Modeling and simulation using industrial standards Modelica, FMI and web 337

components. 338

Tomas Kulhanek, Charles University, Prague, Czech Republic 339

340

We use industrial standard Modelica to express complex models of human physiology (Mateják 341

et al., 2014; Ježek et al., 2017). Recently we have published enabling technology that allows to ex- 342

port complex models in standard functional mockup interface API (FMI) as a web component to be 343

integrated with other web standards and technologies to create modern web application (Kulhanek 344

et al., 2023) (https://bodylight.physiome.cz). Thanks to it the models does not necessarry 345

need to be implemented in Modelica language, but and standard FMI needs to be implemented by 346

other standards to compute model derivatives and do simulation step using a prefered numerical 347

method. 348

In the exemplar case report of metabolic disorder we will demonstrate the process of creating 349

a component models, export them as web component and integrate with other web components or 350

web standards to create interactive application. Model implementation of cardioavscular system, 351

respiratory and blood gas exchange in Modelica will be used. Co-simulation and enriched with 352

chart and numbers presented in virtual monitor of vital signs will control application flow. The 353

foundation of technologies are published with open source license and thanks to chain of scientific 354

and/or industrial standards and tools. The resulting simulator can be executed on any device with- 355

out the need to install special software. Platform needs only modern web browser and supported 356

are Windows/Linux/iOS computers, mobile phones, tablets, virtual reality headset, etc. Exemplar 357

application with accompanied learning material to learn pathophysiology of metabolic disorder is 358

available online at https://egolem.online/dka/. 359

2.8 A Standardized Protocol for Integrative, Multiscale Modeling 360

Ion Moraru, and Eran Agmon, University of Connecticut, USA 361

362

We are developing a standardized protocol for multi-algorithmic model composition, based on 363

standardized schemas for process interfaces, composition patterns, and orchestration patterns. This 364

will provide the foundation for robust infrastructure for systems biology models. The BioSimu- 365

lators project aims to establish this protocol, ensuring reproducibility, tool compatibility, and 366

”plug-and-play” integration of new processes and data. Software tools built around these schemas 367

can include databases, applications, graphical user interfaces, and simulation tools, supported by 368

both local and remote operations, such as containerized and web-based services. By aligning 369

with existing standard formats like SBML and CellML, standard formats for spatial models, and 370

multi-cellular models, the protocol can foster a unified approach that connects these efforts. This 371

approach addresses many challenges by advancing the FAIR (Findable, Accessible, Interoperable, 372

Reusable) principles, allowing researchers to more reliably find simulation modules, understand 373

those models, and connect them reliably into hybrid, multiscale models. We initiated the project 374

with a Verification API, that brings together COPASI, Tellurium, and AMICI–each of them fit 375

with a standardized process interface for uniform timescourses–load them with the same SBML 376

model and simulation instructions, runs them in parallel, and compares results. 377

2.9 openTECR: community curation of Thermodynamics of Enzyme-Catalyzed Re- 378

actions 379

Robert Giessmann, Institute for Globally Distributed Open Research and Education 380

(IGDORE), Berlin, Germany 381

382
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openTECR (””Open database on Thermodynamics of Enzyme-Catalyzed Reactions””) is a 383

database and a community. 384

We create a data collection of apparent equilibrium constants of enzyme-catalyzed reactions, 385

being reliable, open and machine-actionable, with a clear change process to integrate new data 386

and correct errors. We believe that Open Science principles, and specifically Open Data and Open 387

Source are key to achieving our vision. 388

The openTECR database serves computational and experimental scientists in the fields of 389

metabolic engineering, genome-scale metabolic modelling, biocatalysis and related fields by pro- 390

viding curated information. It is used by eQuilibrator as the data basis for making predictions 391

about any possible reaction. 392

Recently, we organized an open community curation effort (https://opentecr.github.io/ 393

invitation-to-curate). We prepared a curation workflow to analyze 278 pages of pages densely 394

packed with tables and textual information. We invited volunteer contributions, and are immensely 395

grateful about 17 volunteers investing almost 100 working hours. 396

At the COMBINE 2024 meeting, I would like to present our initiative and share our lessons 397

learned about organizing successful community curation. I believe that our example can serve as 398

a blueprint for other databases / project ideas which require a large amount of working hours. 399

We discovered that key to receiving contributions is to offer very small packages of work and a 400

detailed curation manual. Our smallest task was 3 minutes long and well received. 401

Our small community ( 40 members) shares a mailing list (https://w3id.org/opentecr) and 402

a GitHub organization where we store our data and code under open licenses (https://github. 403

com/opentecr/). 404

2.10 OpenVT – Developing Framework Description Standards for MultiCellular 405

Agent-Based Virtual Tissue Models 406

James Glazier, Indiana University, USA 407

408

Many simulation frameworks implement multicellular agent-based models using a variety of 409

methodologies (center model, vertex model, Cellular Potts model, finite-element mechanics, ...) 410

and support a variety of biological and mathematical processes it can be often confusing and 411

time consuming to for a researcher to know which simulation framework can fulfill their modeling 412

needs. In our breakout session, we will discuss an approach to defining and categorizing simulation 413

framework capabilities. The session will start with an overview of the various methods employed in 414

multicellular simulations, highlighting their unique features and common challenges. It will present 415

our approach to describing framework descriptions in a standardized way followed by discussion 416

on this approach. 417

2.11 OpenVT: MultiCellular Agent-Based Virtual Tissue Models: Defining Topics 418

and Priorities for Working Groups and Virtual Workshops 419

James Glazier, Indiana University, USA 420

421

Virtual Tissues (VT), agent based multicellular modeling has become indispensable in under- 422

standing complex biological phenomena, from tissue development to disease progression. But the 423

diversity in simulation methods poses challenges in reproducibility, modularity, reusability, and 424

integration for multiscale models, leading to a fragmented ecosystem and hindering growth. The 425

OpenVT Community is trying to address these challenges by bringing siloed research groups to- 426

gether to improve the sharing of VT knowledge. The OpenVT Community supports the expansion 427

of and broader adoption of multicellular modeling beyond academic research labs into greater in- 428

dustry practice. Development of best practices and better reproducibility will ultimately lead to 429

models that more closely follow FAIR (Findable, Accessible, Interoperable, and Reusable) princi- 430

ples, leading to wider use in therapeutic approaches, toxicology, drug discovery and personalization 431

of testing and treatment. 432

2.12 OpenVT – Developing Reference Models for Multicellular Agent-Based Virtual 433

Tissue Models 434

James Glazier, and James Osborne (University of Melbourne, Australia), Indiana 435

University, USA 436

437
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An increasing number of packages implement multicellular agent-based models using a variety 438

of methodologies (center model, vertex model, Cellular Potts model, finite-element mechanics, 439

...). In principle a set of underlying biological and physical processes should yield the same result 440

independent of the package in which they are implemented. However, at the moment, comparison 441

between methodologies or even between different packages implementing the same methodology, 442

is quite challenging. As a first step to building a shared understanding of modeling capabilities 443

and to improve rigor and reproducibility, we define a minimal set of standard reference models 444

which should be implemented in each framework to illustrate their capabilities and reveal hidden 445

discrepancies of approach. This talk will discuss these efforts and introduce our planned breakout 446

session. 447

2.13 A functional tissue unit approach to understanding lung function in health 448

and disease 449

Ruobing Li, Alys Clark, Merryn Tawhai, David Nickerson, Kelly Burrowes, Auckland 450

Bioengineering Institute, University of Auckland, New Zealand 451

452

The primary functional tissue unit of the lungs is the acinus. An acinar unit brings together 453

diverse functions, including airflow, blood flow, gas exchange, mechanical deformation and the effect 454

of surfactant on this, and fluid transport from the blood to the lymphatic vessels. Surfactant is 455

important in reducing alveolar surface tension, ensuring stability and preventing alveolar collapse. 456

Ventilation is driven by the dynamic processes of lung tissue expansion and recoil during breathing. 457

Regional tissue recoil pressures also influence pulmonary perfusion, impacting the distribution of 458

blood flow within the lung. The lymphatic system, integral for maintaining fluid balance and 459

optimal immune function, is affected by these mechanical forces too. The interdependence of 460

these factors is vital for maintaining optimal pulmonary function under physiological conditions. 461

Existing models of varying geometric complexity have been developed to simulate lung mechanical 462

behaviours and various fluid transport, currently as separate systems. The ventilation model of 463

Swan et al. [J Theor Biol. 2012; 300:222-31] combines lung airway structure and tissue mechanics 464

with airflow dynamics. A perfusion model by Clark et al. (2010) simulates pulmonary blood flow 465

within the vasculature. A lung lymphatic model developed by Ashworth et al. (2023) estimates 466

the transfer of fluid from the capillary blood vessels into the interstitial space and the lymphatic 467

vessels. The surfactant model based on Otis et al. (1994) work simulates the dynamic adsorption- 468

desorption process at the air-liquid interface and estimates the impact of surfactant on tissue 469

compliance. These different models reflect the diverse functions occurring within each acinus that 470

work together to determine emergent lung function. However, there is no comprehensive model 471

that integrates these aspects to form a complete functional tissue unit (FTU) of the lung. This 472

study addresses this gap by developing a respiratory FTU that integrates these different models 473

to simulate acinar function and link this to represent whole lung function. Model implemented by 474

CellML, Fortran, and Python. By integrating these individual models, we aim to provide a better 475

understanding of the interactions and dependencies within the lungs, essential for simulating lung 476

function in health and disease. 477

3 Breakouts 478

3.1 Workshop: refineGEMs and SPECIMEN for automated model reconstruction 479

and annotations 480

Gwendolyn O. Döbel, Martin Luther University Halle-Wittenberg, Germany 481

482

”Metabolic model reconstruction usually relies on several cumbersome steps. Different tools 483

exist, which are only partially automated and need to be connected manually. Our aim is to simplify 484

and reduce the manual workload. Thus, we developed the toolbox refineGEMs and the workflow 485

collection SPECIMEN. A stable release of refineGEMs was already used in practice (Bäuerle et al., 486

2023). Both tools are currently under active development (enhancement and extension). 487

This workshop aims to give the attendees a brief introduction to automatic metabolic modelling 488

with the tools refineGEMs (https://github.com/draeger-lab/refinegems) and SPECIMEN 489

(https://github.com/draeger-lab/SPECIMEN). As part of the workshop, an open discussion 490

will be held about issues arising from automatic energy-generating cycle (EGC) dissolution and 491

gap filling. 492
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3.2 Introduction into Nix for scientific software 493

Simon Hauser and Fritz Otlinghaus, Helsinki Systems, Germany 494

495

Working on software in a team brings all kinds of challenges, especially because everyone has 496

a slightly different development environment. These challenges usually start with onboarding new 497

team members, include complications of moving your local environment to a high performance 498

cluster and end in unreproducible bugs that boil down to ””works on my machine””. Some of these 499

issues can be resolved by providing dependency pinning using poetry or other package managers, 500

but these solutions do not cover the operating system and require additional install documentation 501

that usually contains apt usage. Nix is a general purpose package manager that emerged in the last 502

couple of years that solves these issues, by not just pinning the version of dependencies but also 503

system libraries and tools, like the glibc library, python and also python packages. This session 504

will cover the fundamentals of Nix, including installation, command usage and writing your own 505

custom development environment for a specific software. Participants will learn how to leverage Nix 506

to create reproducible scientific workflows, manage dependencies, and ensure consistent software 507

environments across different systems. Through practical demonstrations and hands-on activities, 508

attendees will gain the skills necessary to integrate Nix into their scientific projects, enhancing 509

both the reliability and portability of their software. Join us to discover how Nix can streamline 510

your scientific software development and deployment processes, fostering greater collaboration and 511

innovation in your research endeavors. 512

3.3 Biological and Biophysics Simulation in Tissue Forge: Introduction and Guided 513

Simulation Building 514

T.J. Sego, University of Florida, USA 515

516

Tissue Forge is open-source simulation software for interactive particle-based physics, chemistry 517

and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore 518

models and virtual experiments based on soft condensed matter physics at multiple scales, from the 519

molecular to the multicellular, using a simple interface. While Tissue Forge is designed to simplify 520

solving problems in complex subcellular, cellular and tissue biophysics, it supports applications 521

ranging from classic molecular dynamics to agent-based multicellular systems with dynamic pop- 522

ulations. Tissue Forge users can build and interact with models and simulations in real-time and 523

change simulation details during execution, or execute simulations off-screen and/or remotely in 524

high-performance computing environments. Tissue Forge provides a growing library of built-in 525

model components along with support for user-specified models during the development and appli- 526

cation of custom, agent-based models. Tissue Forge includes an extensive Python API for model 527

and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as 528

well as C and C++ APIs for integrated applications with other software tools. Tissue Forge sup- 529

ports installations on Windows, Linux and MacOS systems and is available for local installation 530

via conda. This tutorial introduces the basic concepts, modeling and simulation features, and 531

some relevant modeling applications of Tissue Forge through guided simulation scripting. Tutorial 532

concepts will introduce basic Tissue Forge modeling concepts and simulation features through the 533

development of interactive simulations in Python. Attendees are encouraged, but not required, 534

to code along as the tutorial interactively develops and tests simulations in multicellular and bio- 535

physics modeling applications. 536

3.4 A COMBINE Standard for Multi-Approach Multi-Scale (MAMS) Modelling 537

Sheriff Rahuman, EMBL-EBI, UK 538

539

Multi-approach Multi-scale (MAMS) modelling represents a cutting-edge method for modelling 540

and analysis of biological systems, leveraging an integrated suite of diverse modelling frameworks. 541

This multi-approach modelling will encompass a combination of diverse modelling formalisms, such 542

as ordinary differential equations (ODE), partial differential equations (PDE), logical, constraint- 543

based, and agent-based models across multiple scales. These models are intricately tied together 544

to facilitate complex simulations. During the dedicated breakout sessions at Harmony 2021, COM- 545

BINE 2021, and HARMONY 2024, we delved into the existing state-of-the-art technologies and 546

standards, including SBML and SED-ML, and their support for multi-approach modelling. These 547

discussions also illuminated the current challenges and gaps within the field. For COMBINE 2024, 548
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our objective is to further this conversation by identifying published MAMS models and bringing 549

together the community to enable the creation of novel standards or the enhancement of existing 550

COMBINE standards to support MAMS. This effort aims to foster interoperability and support 551

the rapidly evolving paradigm of MAMS modelling. 552

3.5 Continuing Work Towards Reproducible Stochastic Biological Simulation 553

T.J. Sego, University of Florida, USA 554

555

Stochastic simulations are commonly used to quantitatively or semi-quantitatively describe the 556

dynamics of biological systems. At various scales and in multiple applications, stochastic simu- 557

lation better reflects observed biological processes and robustness. Various methods are widely 558

used to incorporate stochasticity into biological simulation, such as the Gillespie stochastic simu- 559

lation algorithm for systems biology modeling, stochastic Boolean networks for network modeling, 560

and the Cellular Potts model methodology for multicellular modeling. Proving reproducibility of 561

simulation results is critical to establishing the credibility of a model. To this end, BioModels, 562

the largest repository of curated mathematical models, tests and reports the reproducibility of 563

simulation results for all submitted models when possible. A recent study showed that about 564

50% of the deterministic ordinary differential equation models on BioModels could not be repro- 565

duced when applying criteria for reproducibility to the information provided in their associated 566

publication, reflecting a current crisis of reproducibility. Furthermore, there are no well-accepted 567

metrics or standards for reproducing stochastic simulation results, thus perpetuating the crisis of 568

reproducibility for a broad class of biological models. This breakout session will continue work to- 569

wards establishing an accepted framework for testing the reproducibility of stochastic simulations 570

in biological modeling. The session will provide a brief overview of recent progress towards defin- 571

ing quantitative measures to determine whether stochastic simulation results can be reproduced, 572

and when results have been reproduced. Attendees will discuss current issues to address towards 573

consensus and broad adoption in relevant modeling communities, as well as future work towards 574

reproducibility of stochastic simulation results using multiscale and complex models. 575

3.6 Morpheus: A user-friendly simulation framework for multi-cellular systems 576

biology 577

Lutz Brusch and Jörn Starruß, Technische Universität Dresden, Germany 578

579

Multi-cellular modeling and simulation become increasingly important to study tissue morpho- 580

genesis and disease processes. This tutorial introduces Morpheus (https://morpheus.gitlab.io) 581

in an overview presentation with live demos and hands-on exercises runnable in sync on the pre- 582

senter’s and your own laptop. The focus lies on importing SBML models into Morpheus, extending 583

them in space as reaction-diffusion processes and automatically ””cloning”” them into many indi- 584

vidual cells that can dynamically interact. Also, own modeling ideas can be explored with the help 585

of a tutor. Morpheus offers modeling and simulation of multi-cellular dynamics in a Graphical 586

User Interface (GUI) without the need to program code. It uses the domain-specific language 587

MorpheusML to define and simulate multicellular models in 3D space including the most common 588

cell behaviors and tissue mechanics. Morpheus is open-source software and provides readily instal- 589

lable packages for macOS, Windows, Linux (https://morpheus.gitlab.io/download/latest/). 590

Please download before the tutorial and have a look around the homepage incl. ¿90 example 591

models. 592

3.7 Combine spatial multi-cellular modelling with SBML 593

Jörn Starruß, TU Dresden, Germany 594

595

Modularity is key to creating complex multi-cellular models while preserving the accessibility of 596

meaningful submodels. Naturally, composition also encourages reusability and the likes. We want 597

to discuss and establish a common practice how to overlay the spatial dynamics of multi-cellular 598

models with reaction dynamics defined in the SBML standard. 599

Most obvious features to be represented separately from the spatial cell dynamics are intra- 600

cellular regulatory systems, inter-cellular communication and spatial reaction-diffusion processes 601

using SBML-spatial (https://sbml.org/documents/specifications/level-3/version-1/spatial/).602
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Further issues arise when inter-connecting identical submodels residing in individual cells and the 603

definition of instantaneous assignments upon entity operations (e.g. cell birth and death). 604

As an introductory motivation we will present our latest Morpheus (https://morpheus.gitlab. 605

io) results in embedding spatial reaction-diffusion submodels within moving cells. Using that ex- 606

perience we will sketch a way how to exploit the HMC package (https://sbml.org/documents/ 607

specifications/level-3/version-1/comp/) to compose SBML models and attach them in a 608

second step to the individual scopes of our spatial model. We hope for a lively discussion on best 609

practice approaches interconnecting spatial multi-cellular modeling and the SBML standard. 610

3.8 Training Models using PEtab 611

Fabian Fröhlich, The Francis Crick Institute, UK 612

613

PEtab is a standardized file format for specifying parameter estimation problems (Schmiester et 614

al., 2021). The interoperable format is currently supported by 11 different tools (https://github. 615

com/PEtab-dev/petab#petab-support-in-systems-biology-tools), enabling users to benefit 616

from standardized parameter estimation across frameworks based in Python, Julia, R, MATLAB, 617

C++, or GUIs. 618

Although PEtab was initially developed for parameter estimation, recent efforts have extended 619

the format to improve standardization of various adjacent tasks, including: model selection, multi- 620

scale modeling, PKPD and NLME modeling, optimal control, and visualization. 621

In this breakout session, based on audience interests, we will present introductions to PEtab and 622

its extensions, then discuss current efforts to improve PEtab. People unfamiliar with PEtab are 623

welcome to attend, and might first like to check out the tutorial (https://petab.readthedocs. 624

io/en/latest/tutorial.html). 625

3.9 SBGN PD: current and future development 626

Adrien Rougny, Luxembourg Centre for Systems Biomedicine, University of Luxem- 627

bourg, Luxembourg 628

629

Visualization of biological processes plays an essential role in life science research. Over time, 630

diverse forms of diagrammatic representations, akin to circuit diagrams, have evolved without 631

well-defined semantics potentially leading to ambiguous network interpretations and difficult pro- 632

grammatic processing. The Systems Biology Graphical Notation (SBGN) standard aims to reduce 633

ambiguity in the visual representation of biomolecular networks. It provides specific sets of well- 634

defined symbols for various types of biological concepts. SBGN comprises three complementary 635

languages: Process Description (PD), Entity Relationship (ER), and Activity Flow (AF). The 636

XML-based SBGN Markup Language (SBGN-ML) facilitates convenient storage and exchange of 637

SBGN maps. The SBGN languages as well as SBGN-ML are described in detail in specifications 638

(see sbgn.org). This breakout session will focus on the development of SBGN PD. We invite all 639

participants interested in SBGN to join this session, where we will discuss specific issues related 640

to the next version of the PD specification, as well as more open issues related to a future level of 641

SBGN PD. 642

3.10 Developing a proof of concept for a heap of git-versioned json files as a FAIR 643

alternative to relational databases 644

Robert Giessmann, Institute for Globally Distributed Open Research and Education 645

(IGDORE), Berlin, Germany 646

647

I propose, if there is interest of fellow participants, to think about, and just try out, a heap of 648

json files, versioned in git, as an alternative form to store structured data. 649

Relational databases are great, but hard for ”non-computational people” (read as: the typical 650

experimental, wet-lab person) to create and to change. A heap of json files on GitHub seems still 651

far fledged for some of those persons, but might be the minimal necessary technical barrier they 652

have to cross. 653

Of course, data inside those json files must, for instance, be ”quality controlled”, i.e. checked 654

for correctness and sticking to schemata. But that could be implemented as CI/CD actions. Git 655

itself might put practical limits on the general feasibility of that idea – which is to be tested out. 656

If anyone else is up for it, let’s try it out! 657
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3.11 OpenVT – Developing Framework Description Standards for MultiCellular 658

Agent-Based Virtual Tissue Models 659

James Glazier, Indiana University, USA 660

661

Many simulation frameworks implement multicellular agent-based models using a variety of 662

methodologies (center model, vertex model, Cellular Potts model, finite-element mechanics, ...) 663

and support a variety of biological and mathematical processes it can be often confusing and time 664

consuming to for a researcher to know which simulation framework can fulfill their modeling needs. 665

This session will discuss an approach to defining and categorizing simulation framework capabil- 666

ities. The session will start with an overview of the various methods employed in multicellular 667

simulations, highlighting their unique features and common challenges. It will present our ap- 668

proach to describing framework descriptions in a standardized way followed by discussion on this 669

approach. 670

3.12 OpenVT: MultiCellular Agent-Based Virtual Tissue Models: Defining Topics 671

and Priorities for Working Groups and Virtual Workshops 672

James Glazier, Indiana University, USA 673

674

Virtual Tissues (VT), agent based multicellular modeling has become indispensable in under- 675

standing complex biological phenomena, from tissue development to disease progression. But the 676

diversity in simulation methods poses challenges in reproducibility, modularity, reusability, and 677

integration for multiscale models, leading to a fragmented ecosystem and hindering growth. The 678

OpenVT Community is trying to address these challenges by bringing siloed research groups to- 679

gether to improve the sharing of VT knowledge. The OpenVT Community supports the expansion 680

of and broader adoption of multicellular modeling beyond academic research labs into greater in- 681

dustry practice. Development of best practices and better reproducibility will ultimately lead to 682

models that more closely follow FAIR (Findable, Accessible, Interoperable, and Reusable) princi- 683

ples, leading to wider use in therapeutic approaches, toxicology, drug discovery and personalization 684

of testing and treatment. This session aims to discuss current progress undertaken by the OpenVT 685

community towards a shared ecosystem and look to attendees for insight into what they believe 686

will encourage broader adoption of community guidelines. 687

3.13 OpenVT – Developing Reference Models for Multicellular Agent-Based Virtual 688

Tissue Models 689

James Glazier, Indiana University, USA 690

691

An increasing number of packages implement multicellular agent-based models using a variety 692

of methodologies (center model, vertex model, Cellular Potts model, finite-element mechanics, ...). 693

In principle a set of underlying biological and physical processes should yield the same result in- 694

dependent of the package in which they are implemented. However, at the moment, comparison 695

between methodologies or even between different packages implementing the same methodology, 696

is quite challenging. As a first step to building a shared understanding of modeling capabilities 697

and to improve rigor and reproducibility, we define a minimal set of standard reference models 698

which should be implemented in each framework to illustrate their capabilities and reveal hid- 699

den discrepancies of approach. This session will discuss these efforts and look for feedback from 700

attendees. 701

4 Poster 702

4.1 SPECIMEN: Collection of Workflows for Automated and Standardised Recon- 703

struction of Genome-Scale Metabolic Models 704

Carolin Brune, Gwendolyn O. Döbel, Famke Bäuerle (QBiC), Natia Leonidou (IBMI, 705

DZIF, QBiC), Reihaneh Mostolizadeh (Justus Liebig University Gießen), and An- 706

dreas Dräger, Martin Luther University Halle-Wittenberg, Germany 707

708
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SPECIMEN (https://github.com/draeger-lab/SPECIMEN) is an open-source collection of 709

different workflows designed for the automated and standardised curation of genome-scale models. 710

It is Python-based and integrates a variety of tools, including MCC, SBOannotator, refineGEMs, 711

and BOFdat, and more, to concatenate modelling steps like gap filling, annotation, duplicate 712

removal, and biomass normalisation into a single pipeline. SPECIMEN offers different workflows 713

tailored to various modelling approaches and types of input data, facilitating efficient and consistent 714

genome-scale model reconstruction. 715

4.2 What is an appropriate standard for modeling microbial communities? 716

Beatrice Ruth, Peter Dittrich (FSU Jena), and Bashar Ibrahim, Friedrich Schiller 717

Universität Jena, Germany 718

719

Microbial communities exist almost everywhere on earth and play a major role in environmen- 720

tal processes as well as health and aging. A microbial community consists of a complex network 721

of taxa and their interactions with one another. My task at the moment is to find a way to 722

use measurements to understand the hierarchical structure and to predict interactions within the 723

community. In this context, I noticed that there are no comprehensive standards for modeling 724

microbial communities. Therefore, I would like to ask the question, what would be a suitable 725

standard for modeling microbial communities? To represent the hierarchical structure, the inter- 726

sections and unions of self-maintaining taxa combinations (organizations) are ordered in a lattice. 727

While the intersections highlight the core microbiome and the general similarities between different 728

organizations, additional unions reveal possible negative interactions. When working with mea- 729

surements, in addition to the individual taxa composition, other environmental parameters such 730

as at least time and location are important. Based on chemical organization theory, the individual 731

organizations of a given reaction network and thus also their intersection and union sets can be 732

calculated. The reverse path is now examined for interaction prediction. Here I am currently using 733

resource-consumer models including toxins to also take negative interactions into account. Many 734

different models can create the same hierarchical structure. Therefore, the focus is on a model 735

for representation with as few resources as possible, assuming as few interactions as possible. I’m 736

curious how this could be accounted for in a standard, as it would increase clarity and simplify 737

exchange. Does it need more than, for example, SBML or a simple extension? 738

4.3 Integrate modelling standards with Energy-based System Analysis 739

Weiwei Ai, Peter Hunter, and David Nickerson, Auckland Bioengineering Institute, 740

The University Of Auckland, New Zealand 741

742

Energy is a fundamental concept in physical processes. Physiological systems often involve 743

various physical processes, with energy serving as a universal language across different domains. 744

Energy-based modelling frameworks, such as bond graphs and port-Hamiltonian formulation, have 745

been recently introduced into the computational biology community. The energy-based frameworks 746

adopt a hierarchical and modular approach, which captures traceable energy storage, dissipation, 747

and transduction, offering comprehensive insights into the systems under investigation. 748

The COMBINE community has established standards for computational biological models, such 749

as CellML and SED-ML, which are used for encoding mathematical models and simulation exper- 750

iments of physiological processes. This talk will explore the potential integration between these 751

standards and energy-based approaches. We will demonstrate how we leverage these modelling 752

standards to extract information from models for system analysis and invite input and suggestions 753

from the community. 754

4.4 The preCICE v3 coupling library and the emerging preCICE ecosystem 755

Gerasimos Chourdakis, Jun Chen; Ishaan Desai, Carme Homs-Pons, Benjamin Ro- 756

denberg (Technical University of Munich), David Schneider, Miriam Schulte, Frédéric 757

Simonis, and Benjamin Uekermann, University of Stuttgart, Germany 758

759

The coupling library preCICE (precice.org) allows coupling simulation codes at runtime, en- 760

abling flexible and efficient partitioned multi-physics simulations, exchanging data over point lo- 761

cations during a time loop. preCICE v1, released in 2016, introduced a high-level API, offering 762
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massively parallel communication and mapping methods, as well as advanced IQN coupling al- 763

gorithms. preCICE v2, released in 2020, included several integrations to established open-source 764

codes (such as OpenFOAM, SU2, deal.II, FEniCS, and more), allowing users to execute simulations 765

often without having to write any code. This increasing number of components and examples is 766

now a citable preCICE Distribution. The latest preCICE Distribution (v2404) includes 23 com- 767

ponents and 31 different example scenarios coupling multiple possible combinations of codes, fea- 768

turing preCICE v3, which introduces several new features (such as time interpolation, much faster 769

Partition-of-Unity RBF mapping methods, experimental Geometric Multiscale mapping), and a 770

much simplified API. Common applications now extend far beyond fluid-structure interaction, now 771

including applications in biomechanics (via codes such as OpenDiHu or FEBio), porous media (e.g., 772

via DuMux), ice-sheet modelling, and more. This poster will summarize important updates in the 773

preCICE project, and discuss current plans for integrating the community towards a community- 774

driven ecosystem of FAIR (Findable, Accessible, Interoperable, and Reusable) components and 775

simulation cases, opening up to new applications and scientific communities. 776

4.5 ModelPolisher: Enhancing the Quality and Completeness of Genome-Scale 777

Metabolic Models (GEMs) 778

Dario Eltzner, Bahaa Ziadah, Thomas J. Zajac, Matthias König, Kaustubh Trivedi 779

and Andreas Dräger, Computational Systems Biology of Infections and Antimicrobial- 780

Resistant Pathogens, Institute for Biomedical Informatics (IBMI), Tübingen, Ger- 781

many 782

783

Background: 784

Genome-scale metabolic models (GEMs) play a central role in systems biology and enable 785

detailed simulations and predictions of metabolic processes. However, the quality and completeness 786

of these models can vary considerably, which compromises their utility. GEMs often suffer from 787

inconsistencies, incomplete annotations, and structural inaccuracies that can limit their utility. A 788

measure of model quality, the MEMOTE score, often highlights these shortcomings, indicating 789

areas such as missing gene associations, metabolite inconsistencies, and incorrect mass balances. 790

To address this problem we developed ModelPolisher, a tool for standardizing, annotating and 791

refining SBML models. 792

The results: 793

ModelPolisher has drastically improved the quality of the annotation of GEMs. By aligning 794

model components with BiGG IDs, the tool enriches models with consistent and detailed metadata, 795

facilitating model sharing and reproducibility. In addition, ModelPolisher’s built-in checks for 796

structural correctness, such as mass balance and metabolite connectivity, have proven effective in 797

identifying and correcting errors. Our application of ModelPolisher to a number of models from 798

the BiGG and BioModels databases has resulted in a major improvement in model quality and 799

metadata completeness. 800

Conclusion: 801

ModelPolisher is a must-have tool for systems biology that addresses the critical need for high- 802

quality, well-annotated GEMs. Its power to automatically enhance model metadata and ensure 803

structural integrity not only improves model utility, but also promotes collaboration and data 804

sharing. The tool’s impact is particularly evident in large modeling projects where consistency 805

and accuracy are paramount. 806

Availability: 807

ModelPolisher is open-source on GitHub at https://github.com/draeger-lab/ModelPolisher. It 808

can be used from the command line or integrated into larger workflows and offers a flexible solution 809

for researchers. Extensive documentation and examples make it easy to use, and the community 810

is encouraged to contribute to the ongoing development and improvement of the tool. 811

4.6 Partitioned simulations using the neuromuscular simulation framework OpenDiHu812

Carme Homs-Pons, and Miriam Schulte, University of Stuttgart, Germany 813

814

”OpenDiHu is a high-performance computing framework for skeletal muscle simulations. Cre- 815

ated and developed at the University of Stuttgart, it is an open-source project written in C++. It 816

uses python scripting and provides CellML support. OpenDiHu offers ready-to-use physics-specific 817

solvers that can be combined by the user to create a tailored muscle solver. The available mod- 818

els include 3D finite element hyperelastic models, subcellular models and a motor neuron pool 819
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model among others. The user does not have to worry about the mapping between models or time 820

sub-cycling, as this is automatically done by the internal coupling tool from OpenDiHu. Besides, 821

OpenDiHu has a preCICE adapter. preCICE is a coupling library for partitioned multi-physics 822

simulations. Using preCICE, we can couple OpenDiHu to other software, e.g., FEBio and deal.ii. 823

Finally, the poster will include use-cases to better showcase what we can do using OpenDiHu and 824

preCICE. In particular, we will present our latest results for a human biceps simulation and our 825

work-in-progress towards a model of the agonist-antagonist myoneural interface.” 826

4.7 SBSCL: A Library of Efficient Java Solvers and Numerical Methods to Analyze 827

Computational Models in Systems Biology 828

Arthur Neumann (Eberhard Karl University of Tübingen, Germany), Max Hatfield 829

(German Center for Infection Research (DZIF), Quantitative Biology Center (QBiC), 830

Eberhard Karl University of Tübingen), Taichi Araki (Graduate School of Science 831

and Technology, Keio University, Japan), Akira Funahashi (Graduate School of Sci- 832

ence and Technology, Keio University, Japan), and Andreas Dräger (Data Analytics 833

and Bioinformatics, Institute of Computer Science Martin Luther University Halle- 834

Wittenberg, German Center for Infection Research (DZIF), Quantitative Biology 835

Center (QBiC), Eberhard Karl University of Tübingen, Germany) 836

837

Numerical calculations are at the heart of systems biology. Such computations require inter- 838

preting models in a specific framework and performing several preprocessing steps to pass the 839

model to a specialized solver. The Systems Biology Simulation Core Library (SBSCL) is a soft- 840

ware library that simulates and analyzes diverse systems biology models, including flux balance 841

constraints, stochastic simulation, and ordinary differential equation systems. It parses SBML 842

models (the Systems Biology Markup Language), a common language used to describe biological 843

processes, and SED-ML files to conduct more involved analyses. The library supports various 844

algorithms for deterministic and stochastic simulations, allowing precise and efficient simulation 845

of even complex biological and biochemical processes. Furthermore, the library supports integra- 846

tion with other tools and frameworks. SBSCL has been well-tested and benchmarked against the 847

entire SBML Test Suite. It supports several extension packages and provides a highly efficient 848

solver package for SBML models that can be incorporated into any program that runs on the 849

Java Virtual Machine (JVM). SBSCL is available free of charge, even for commercial purposes, at 850

https://github.com/draeger-lab/SBSCL. 851

4.8 BayModTS: A Bayesian workflow to process variable and sparse time series 852

data. 853

Sebastian Höpfl and Nicole Radde, University of Stuttgart, Germany 854

855

Biomedical data generation is limited due to cost and ethical aspects. This leads to sparse 856

time series with only a few replicates available. The analysis of this data is further complicated by 857

the inter-individual variability of organisms and the variability within one organism over time. In 858

this context, analyses that consider only the means and ignore the data variability fail due to low 859

signal-to-noise ratios. 860

Bayesian Modeling of Time-Series Data (BayModTS) processes the data and takes the un- 861

certainty from highly variable time-series data into account. It employs the retarded transient 862

functions of C. Kreutz as a universal simulation model and can be easily adapted to user-specified 863

SBML models. Using an appropriate noise model, a parameter posterior distribution is inferred 864

via Markow-Chain-Monte-Carlo sampling. Posterior predictive distributions transfer parameter 865

samples from the posterior to model predictions, providing continuous predictions with filtered 866

noise. We demonstrate BayModTS’ feasibility on rats’ in vivo liver perfusion after 60% Portal 867

Vein Ligation. BayModTS acts as a noise filter and transforms MRI perfusion measurements into 868

time-continuous predictions about the perfusion of individual liver lobes equipped with credibility 869

tubes. These can be used as input for liver function models. 870

In summary, BayModTS is a Findable, Accessible, Interoperable, and Reusable (FAIR) Bayesian 871

workflow to analyse variable and sparse time series data. A user-friendly toolbox can be found on 872

GitHub. 873
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4.9 The role of standards in defining an ecosystem for Virtual Human Twins 874

(VHTs) 875

Gerhard Mayer, Martin Golebiewski, and Wolfgang Müller, HITS, Heidelberg, Ger- 876

many 877

878

The European EDITH (Ecosystem Digital Twins in Healthcare) project (https://www.edith- 879

csa.eu) funded by the European Commission is paving the road for building a European infras- 880

tructure for Virtual Human Twins (VHTs) in healthcare. A Virtual Human Twin (VHT) is data- 881

and/or knowledge-driven multiorgan and multiscale representation of the quantitative human phys- 882

iology of a single individual or a group of individuals and can be used for complex personalized 883

predictive computational simulations that are applicable for personal health forecasting, for disease 884

and treatment prognosis prediction, for personalized clinical decision support systems to simulate 885

medical treatment options, for the development of personalized medical products, and for the use 886

in biomedical research (e.g. for the data-driven generation of hypotheses in the development of 887

mechanistic models), as well as for many other possible applications in the health domain. Building 888

such an infrastructure for Virtual Human Twins requires interoperability of the manifold data and 889

computational models constructed based on those data, and thus, a high degree of standardization 890

of data and models, as well as applied workflows, modelling approaches and provenance informa- 891

tion for traceability. Such standards are defined by initiatives of the scientific community, such 892

as COMBINE, GA4GH, ASME and others, as well as by formal Standard Defining Organizations 893

(SDOs), such as ISO with their technical committees. EDITH develops a proof of concept for a 894

data and model repository and a simulation platform and comprises also ethical, legal, social im- 895

plications (ELSI) and regulatory compliance aspects, so that in the long run, EDITH will establish 896

a marketplace for digital twins in healthcare. 897

4.10 Recommendations and requirements for implementing computational models 898

in clinical integrated decision support systems 899

Martin Golebiewski (HITS gGmbH, Heidelberg, Germany), Pérez Laura López (Uni- 900

versidad Politécnica de Madrid-Life Supporting Technologies Research Group, Madrid, 901

Spain), Elena Martinelli (Unit of Maxillofacial Surgery, Department of Medicine and 902

Surgery, University Hospital of Parma, Parma, Italy), Marc Kirschner (Forschungszen- 903

trum Jülich GmbH, Projekt Management Jülich, Jülich, Germany), Sylvia Kro- 904

bitsch (Forschungszentrum Jülich GmbH, Projekt Management Jülich, Jülich, Ger- 905

many), Heike Moser (DIN - German Institute for Standardization, Berlin, Germany), 906

Giuseppe Fico (Universidad Politécnica de Madrid-Life Supporting Technologies Re- 907

search Group, Madrid, Spain), and Tito Poli (Unit of Maxillofacial Surgery, Depart- 908

ment of Medicine and Surgery, University Hospital of Parma, Parma, Italy) 909

910

Years of progress in biomedical technology have generated a vast number of omics, medical 911

imaging, and health data in multiple formats and described by corresponding metadata in het- 912

erogenous ways. Despite its significant promise for clinical use, this big data remains underutilized. 913

The EU-funded EU-STANDS4PM project has established a pan-European expert forum for eval- 914

uating existing standards and develop new guidelines for in silico methodologies in personalized 915

medicine. In this context an ad-hoc working group has been created to discuss the practical recom- 916

mendations and requirements that should be considered for implementing computational models 917

in clinical integrated decision support systems. The outcome of these discussions has resulted in 918

the standard draft ISO/TS 9491-2 ”Guidelines for implementing computational models in clinical 919

integrated decision support systems” submitted to and accepted by the ISO committee ISO/TC 920

276 Biotechnology. Its publication by ISO is anticipated. 921

This standard draft delivers fundamental requirements for: 1) clinically-driven projects stan- 922

dardization, 2) data handling, 3) assessment of data availability and quality in clinically-driven 923

projects, 4) data modeling and interpretability, 5) validation of existing and development of new 924

models for different populations, 6) uncovering patient-specific and population-related patterns 925

that can improve care, 7) reinforcing a multidisciplinary decision-making process, 8) creating a 926

virtuous cycle of learning, 9) patient involvement and 10) risk management. 927

We here introduce a guideline for setting up, detailing, annotating, as well as ensuring the 928

interoperability and integration of health data and resulting models, along with their accessibil- 929

ity and origin, in a way that is both understandable and grounded in evidence. It outlines the 930

integration of these guidelines with the conduct of clinical trials through standard operating pro- 931
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cedures. Additionally, it deals with the criteria and advice for the data needed to build or validate 932

these models. These recommendations aim to contribute to the standardization of a framework to 933

regulate the use of data-driven systems for clinical research. 934

4.11 Shining Light on Single-Cell Dynamics and Heterogeneity: Design and anal- 935

ysis of a hybrid population model for an epigenetic memory system. 936

Viviane Klingel and Nicole Radde, University of Stuttgart, Germany 937

938

Heterogeneity in biological systems can be quantified efficiently by single-cells measurement 939

techniques like flow cytometry. However, many modelling approaches currently cannot capture 940

this behavior, as often only the average cell is covered in commonly used ODE models. Single-cell 941

data can be reduced to summary statistics for use with these models, but this leads to a loss of 942

information in the data and, more importantly, only provides a complete description if the data 943

is close to a normal distribution. Especially in the case of bimodal distributions, which can for 944

example occur in bistable systems, averages are poor descriptions of the data and lack the ability 945

to reproduce important features of the system. The synthetic epigenetic memory system from Graf 946

et al. (2022) is such a particular system. It is characterized by the ability to switch from an OFF- 947

to an ON-state through a transient metabolic trigger. This ON-state is sustained via positive 948

feedback based on DNA methylation. A large part of the cells can remember this state for many 949

days, but eventually, more and more cells switch back to the OFF-state. In the experimental data, 950

this is observable as a transient appearance of two subpopulations, ON- and OFF-cells, with a drift 951

towards the OFF state. We aim to capture this transient bimodality by a tailored model which 952

describes heterogeneous single-cell trajectories. Our hybrid model combines the simulation speed 953

of differential equations with a stochastic process describing cell division, as well as distributed 954

parameters and measurement noise. We trained the model by comparing the simulated population 955

to the data using the Kolmogorov metric, a shape sensitive distance between distributions. The 956

model reproduces the experimental single-cell data as well as bulk methylation measurements well 957

and is able to predict previously unseen data, including experiments of cyclic ON-OFF-switching 958

with an additional input. Our trained model provides insights into the switching behavior and 959

in particular the mechanisms behind the drift towards the OFF-state on the population and on 960

the single-cell scale. Our analysis suggests that the stochastic nature of the cell division plays an 961

important role in the destabilization of the ON-state, but its effect is only observable over long 962

time. 963

4.12 TFpredict 964

Dóra Viktória Molnár (German Center for Infection Research (DZIF), Tübingen, Ger- 965

many, Quantitative Biology Center (QBiC), Eberhard Karl University of Tübingen, 966

Germany), Michael Gaas (German Center for Infection Research (DZIF), Tübingen, 967

Germany Quantitative Biology Center (QBiC), Eberhard Karl University of Tübin- 968

gen, Germany), Andreas Dräger (German Center for Infection Research (DZIF), 969

Tübingen, Germany, Quantitative Biology Center (QBiC), Eberhard Karl University 970

of Tübingen, Germany, Data Analytics and Bioinformatics, Institute of Computer 971

Science, Martin Luther University Halle-Wittenberg, Germany) 972

973

Gene-regulatory and signaling networks have matured into substantial instruments for analyz- 974

ing biological functions. Constructing such networks highly depends on the availability of detailed 975

information about protein functions, which often needs to be completed, particularly for less well- 976

studied organisms. Transcription factors (TFs) play a crucial role in regulating gene expression 977

and are vital for understanding complex biological networks. TFpredict is a cutting-edge super- 978

vised machine-learning tool designed to facilitate network building by accurately predicting TF 979

interactions and regulatory pathways. In combination with SABINE, TFpredict can even predict 980

the nature of interactions and binding domains, providing a comprehensive view of the regulatory 981

mechanisms at play. The methodology involves BLAST score extraction, superclass prediction with 982

different classifier models, and the identification of DNA-binding domains with InterProScan. The 983

application of TFpredict in constructing robust and comprehensive biological networks showcases 984

its potential to revolutionize regulatory network analysis. By automating the prediction process, 985

TFpredict significantly reduces the time and effort required for network construction. Its ability 986

to predict interactions and binding domains offers a detailed understanding of TF dynamics, fa- 987

cilitating the study of complex regulatory pathways. This capability is particularly beneficial for 988

20



research on less well-studied organisms, where experimental data may be sparse. TFpredict is a 989

powerful tool in the field of systems biology, enabling researchers to gain deeper insights into TF 990

dynamics and regulatory networks. Its integration into network analysis workflows enhances the 991

accuracy and comprehensiveness of the resulting models, paving the way for discoveries in gene reg- 992

ulation. TFpredict is available as an open-source Java project on GitHub, providing the scientific 993

community access to its functionalities. The tool can be easily integrated into existing bioinfor- 994

matics pipelines, and comprehensive documentation facilitates its use. Researchers are encouraged 995

to contribute to its ongoing development and application, ensuring its continued evolution and 996

relevance in network modeling. 997

4.13 A Computational Pipeline for Evaluating Agreement Between Large-Scale Mod- 998

els and Diverse Datasets 999

Jonah Huggins, Isabel Leal, Benjamin Childs, Marc Birtwistle, Clemson University, 1000

USA 1001

1002

Computational models capturing the function of every gene within a cell, known as Whole-Cell 1003

Models (WCMs), can predict complex, multi-gene phenotypes while reconciling discrepancies in 1004

current understanding (Karr et al., 2012; Macklin et al., 2020). Constructing such models requires 1005

the integration of diverse datasets of varying sizes from different labs and assay types. However, 1006

aggregating these datasets into a model-readable format to scalably identify model-data mismatch 1007

(i.e. knowledge gaps) pose a large challenge for model construction (Szigeti et al., 2018). We are 1008

creating a computational pipeline to rapidly evaluate agreement of a large-scale mechanistic model 1009

of a human epithelial cell (the SPARCED model (Erdem et al., 2022)) with a compendium of data 1010

spanning multiple sources and modalities. Conditions, duration, and results of wet-lab experi- 1011

ments are converted into a machine readable format based in-part on PEtab guidelines (Schmi- 1012

ester et al., 2021). To ensure this pipeline covers a broad range of potential use case scenarios, we 1013

constructed 13 benchmarks SPARCED has previously been validated against, comprising various 1014

biological conditions, perturbations, and measurement techniques. Initial deployment (i.e. creat- 1015

ing new benchmarks) on the LINCS Microenvironment (ME) perturbation dataset (Gross et al., 1016

2022) indicates mixed agreement with Reverse Phase Protein Array (RPPA) data. Further model 1017

agreement is being evaluated with RNAseq, ATACseq, and highly multiplexed immunofluorescence 1018

perturbation data. This pipeline will provide a means to rapidly evaluate how diverse datasets col- 1019

lectively compare to model variants, thereby improving the accuracy and scalability of SPARCED 1020

and contributing to the creation of a human Whole-Cell Model. 1021

4.14 Standard compliant data and model management for systems medicine projects 1022

Olga Krebs, Susan Eckerle, Martin Golebiewski, Anne Elin Heggland, Xiaoming Hu, 1023

Maja Rey, Urlike Wittig, and Wolfgang Müller, Heidelberg Institute for Theoretical 1024

Studies HITS gGmbH, Germany 1025

1026

Large collaborative projects need to share data during and after, within and beyond the con- 1027

sortium. FAIRDOM-SEEK (https://fairdomseek.org/) is an open-source software for storing, 1028

cataloguing, sharing and reusing research outcomes designed to support the principles of FAIR 1029

(Findable, Accessible, Interoperable, and Reusable) research data management. Originally devel- 1030

oped for the needs of systems biology of microorganisms, SEEK is used in numerous projects of 1031

systems biology, systems medicine, and related domains. All data types can be handled and the use 1032

of files or references to files is possible. Users can change the visibility of files and references, making 1033

it a platform for projects and data publication. Its properties make it an interoperability resource 1034

for combining different tools for scientific work and subsequent publication of the outcomes. The 1035

systems medicine approach to quantification and characterization of large complex systems involves 1036

integration of multipledata types (e.g. genomics, proteomics, metabolomics, phenomics, images, 1037

patient related data, etc.), stored in several specialized systems used within one project. LiSyM- 1038

Cancer for example, uses REDCap (https://www.project-redcap.org/) as a clinical data system 1039

that manages information about patients and samples; openBIS (https://openbis.ch/) as pri- 1040

mary system for experimental raw data and its metadata; Nextcloud (ttps://nextcloud.com/) 1041

for short-term raw data exchange; and OMERO for microscopic images. The harmonisation and 1042

integration of (meta)data between these platforms is mandatory to make the data comparable 1043

and publishable in open data repositories. Here, we describe our experience in combining multiple 1044

open-source data repository systems for the benefit of large collaborative system medicine projects. 1045
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4.15 MomaPy: a Python library to work with molecular maps programmatically 1046

Adrien Rougny, Luxembourg Centre for Systems Biomedicine, University of Luxem- 1047

bourg, Luxembourg 1048

1049

Molecular mechanisms of biological systems and pathways may be described and represented 1050

graphically under the form of molecular maps. In a molecular map, nodes represent biological 1051

entities such as (pools of) bio-molecules and edges relationships between these entities. Molecular 1052

maps may be represented and exchanged using standard graphical languages and formats (e.g., 1053

SBGN, SBGN-ML, SBML) that are supported by a handful of editors (e.g., SBGN-ED, Newt, 1054

CellDesigner) and libraries (e.g., libSBGN, libsSBML, SBMLDiagrams). While these tools allow 1055

users to easily build and save maps as images or in standard exchange formats, they are not 1056

well suited to work with the content of maps programmatically. Here we introduce MomaPy, a 1057

Python library that allows users to perform a wide variety of tasks on maps, including reading, 1058

comparing and rendering them efficiently. At its core, MomaPy separates the model of a map 1059

(what is represented) from its layout (how it is represented) à la SBML+layout/render, easing the 1060

navigation of their biological content. MomaPy currently supports SBGN PD, SBGN AF, and 1061

CellDesigner maps, and may be easily extended to support other types of maps and additional 1062

tasks to be performed. 1063

4.16 Eulerian Parameter Inference: Modelling of Single-Cell Data 1064

Vincent Wagner and Nicole Radde, University of Stuttgart, Germany 1065

1066

Single-cell measurement techniques and spatial omics call for modelling approaches capable 1067

of capturing inherent cell population heterogeneity. In-silico models must be adequately param- 1068

eterised to reflect the data and enable accurate predictions beyond data reproduction. We here 1069

present Eulerian Parameter Inference (EPI), a probabilistic inference method based on a change 1070

of variables. The input of EPI is 1) a deterministic simulation model, such as reaction rate equa- 1071

tions or other ordinary differential equations, and 2) data exhibiting large variations, for instance, 1072

single-cell gene-expression data. EPI translates all information from the data into distributed 1073

model parameters. Further, the employed change of variables formulation allows for point-wise 1074

evaluation of the inferred parameter density. Each evaluation only requires one forward simulation 1075

of the model and its Jacobian. In particular, we do not require an explicit formulation of the 1076

inverse mapping from the data to the parameters. We demonstrate EPI’s capabilities on diverse 1077

models ranging from algebraic equations to ordinary and even partial differential equation systems, 1078

thereby proving its practical applicability. The eulerpi Python package is available on the Python 1079

Package Index PyPI. It provides all necessary functionalities and only requires a model and a 1080

data sample as user input. We hope this easy-to-use package will facilitate EPI’s applicability in 1081

numerous and diverse research groups. 1082

1083

Figure 1: Participants at this year’s COMBINE.
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