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Objective: Whole-cell (WC) modeling is a promising tool for
biological research, bioengineering, and medicine. However, sub-
stantial work remains to create accurate, comprehensive models
of complex cells. Methods: We organized the 2015 Whole-Cell
Modeling Summer School to teach WC modeling and evaluate
the need for new WC modeling standards and software by
recoding a recently published WC model in SBML. Results: Our
analysis revealed several challenges to representing WC models
using the current standards. Conclusion: We, therefore, propose
several new WC modeling standards, software, and databases.
Significance: We anticipate that these new standards and software
will enable more comprehensive models.

Index Terms—Whole-cell modeling, Systems biology, Compu-
tational biology, Simulation, Standards, Education

I. INTRODUCTION

COMPUTATIONAL modeling is a powerful tool for bi-
ological research, bioengineering, and medicine to un-

derstand complex systems. It has been used to identify gene
functions [1], engineer metabolic pathways [2], and identify
drug targets [3]. Computational models also have the potential
to help bioengineers design new microorganisms that can syn-
thesize high value chemicals, sense toxins, and decontaminate
waste, as well as help clinicians interpret individual ‘omics
profiles and personalize medical therapy [4]. Realizing this
potential requires more comprehensive models that can predict
phenotype from genotype. In turn, this requires improved
modeling and simulation standards and software [5–10].

Recently, Karr et al. developed the first whole-cell (WC)
model which represents every individual gene function [11].
The model represents the life cycle of a single Mycoplasma
genitalium bacterial cell and predicts the dynamics of every
molecular species. The model is composed of 28 pathway sub-
models that are represented using multiple mathematical for-
malisms including stochastic simulation, ordinary differential
equations (ODEs), flux balance analysis (FBA), and Boolean
rules (BRs). The model was implemented in MATLAB.

The M. genitalium model has been used to gain novel
insights into non-genetic cell cycle regulation mechanisms
[11], learn unknown kinetic rate parameters from phenotypic
data [12], calculate the metabolic costs of synthetic circuits
[13], and repurpose antibiotics [14].

Karr et al. extensively documented the model; developed
the WholeCellKB [15], WholeCellSimDB [16], and Whole-
CellViz [17] software tools to provide user-friendly interfaces
to the model; and published the model open-source. This has
enabled other researchers to reuse the model [12–14].

However, significant domain expertise is still needed to
reuse the model or to develop new WC models. The multi-
algorithm modeling methodology is complex. The model is
difficult to understand, reuse, and extend because it is de-
scribed directly in terms of its numerical simulation rather than
in a software-independent format. The model code is difficult
to learn and reuse because it is large, complex, and intertwined
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with the details of the M. genitalium model. The simulation
code is also slow. Furthermore, the simulation code requires
the proprietary MATLAB software package.

New standards and software tools are needed to help re-
searchers build and simulate WC models. They would help
researchers reuse, reproduce, and compare models, as well as
share models through repositories such as BioModels [18].

Several systems biology standards have been developed
by the COmputational Modeling in BIology NEtwork (COM-
BINE) [8], including the Systems Biology Markup Language
(SBML) [19], CellML [20], the Simulation Experiment De-
scription Markup Language (SED-ML) [21], and the Sys-
tems Biology Graphical Notation (SBGN) [22] (Table I).
SBML and CellML are formats for representing mathematical
models. CellML describes the mathematics whereas SBML
describes biological processes. Both support several modeling
formalisms including ODEs and FBA. SED-ML describes and
enables researchers to reproduce computational experiments.
SBGN is a visual notation for describing biological processes.
However, none of these standards have been used for WC
modeling.

We organized the 2015 Whole-Cell Modeling Summer
School to train students in WC modeling and to evaluate
the need for new WC modeling standards and software. The
school focused on creating a reusable WC model by recoding
the M. genitalium model in SBML. We focused on SBML
because SBML is the most widely used systems biology
standard and there was insufficient time to evaluate multiple
standards. The school also aimed to improve numerous details
of the model, visualize the model with SBGN, and describe
model simulations with SED-ML. The latest versions of our
SBML-encoded submodels and SBGN diagrams are available
at https://github.com/whole-cell-tutors/wholecell/releases/tag/
meeting-report.

Most importantly, the school generated extensive commu-
nity discussion on how to best build and simulate WC models.
This report describes the outcome of these discussions, includ-
ing our recommendations for new standards and software to
accelerate WC modeling. We also describe our progress toward
recoding the M. genitalium model in SBML and the lessons
that we learned about organizing research-based schools.

II. THE 2015 WHOLE-CELL MODELING SUMMER SCHOOL

The school was held March 9-13, 2015, at the University
of Rostock, Germany. It was organized by D. Waltemath and
F. Schreiber and funded by the Volkswagen Foundation. 43
students and nine instructors participated in the school. A fol-
low up meeting involving 15 of the original and six additional
participants was held October 10-11, 2015, at the University
of Utah, USA. All of the materials for the school are available
at http://sites.google.com/site/vwwholecellsummerschool.

We advertised the school through community mailing lists,
conference calendars, and websites. Applicants were asked
to describe their experience and interest in WC modeling.
We chose 43 participants from 118 applicants based on three
criteria. (1) We identified the most qualified and enthusiastic
applicants. (2) We gave preference to students, female ap-
plicants, and applicants from developing countries. (3) We

https://github.com/whole-cell-tutors/wholecell/releases/tag/meeting-report
https://github.com/whole-cell-tutors/wholecell/releases/tag/meeting-report
http://sites.google.com/site/vwwholecellsummerschool
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Table I
SYSTEMS BIOLOGY STANDARDS AND STANDARDIZATION EFFORTS.

Acronym Name Type Description Ref.

CellML CellML Standard Describes models in terms of mathematical relationships 20
COMBINE COmputational Modeling in BIology NEtwork Community Develops computational biology standards and software 8
SBGN Systems Biology Graphical Notation Standard Describes biochemical pathway diagrams 23
SBML Systems Biology Markup Language Standard Describes models in terms of biochemical processes 24
SBML Arrays SBML Package: Arrays Standard Describes arrays 25
SBML Comp SBML Package: Hierarchical Model Composition Standard Describes how model are composed from other models 26
SBML Distrib SBML Package: Distributions Standard Describes random distributions 27
SBML FBC SBML Package: Flux Balance Constraints Standard Describes constraint-based models 28
SBML Multi SBML Package: Multistate and Multicomponent Species Standard Supports rule-based modeling 25
SBML Spatial SBML Package: Spatial Processes Standard Describes spatially-resolved models 29
SED-ML Simulation Experiment Description Markup Language Standard Describes computational experiments 21

selected participants to represent a broad range of scientific
disciplines. We used the same criteria to select instructors.

The school began with introductory lectures on WC model-
ing and the existing systems biology standards by J. Karr and
M. Hucka and introductory discussions on model composition,
state representation, and stochastic modeling. Most of the
school was devoted to active learning sessions in which the
students and instructors were divided into 11 groups and
challenged to use SBML to recode the M. genitalium model,
use SBGN to visualize the model, and use SED-ML to
simulate the model. Groups 1-8 encoded submodels. Group 9
developed a submodel integration scheme. Group 10 annotated
and visualized the model. Group 11 helped all of the other
groups understand, encode, and improve the model. Table SII
lists the groups and participants of both meetings. Each day
concluded with community discussions. In addition, the school
included a poster session and networking activities.

The students learned about state-of-the-art WC modeling;
the open challenges to building more complex models; open-
source modeling software; the importance of reproducibility;
and the SBML, SED-ML, and SBGN standards. The students
also expanded their professional networks. Several of the
students reported that the skills and knowledge they gained
from the school would enhance their research.

We learned several lessons about organizing research-based
schools. (1) Students enjoy working on research problems
more than solving prescribed exercises. This engages stu-
dents in the field, challenges them, and helps them build
practical skills. (2) Research-based schools should have clear
background knowledge expectations, learning objectives, and
research goals. This helps students decide whether to partici-
pate, prepare, and learn efficiently. (3) Research-based schools
should have a flexible schedule, multidisciplinary participants,
and a high teacher-to-student ratio. This allows students to en-
gage in impromptu discussions, draw on multiple perspectives,
and get feedback and iterate quickly.

III. TOWARD AN IMPROVED SBML-ENCODED WC MODEL

In addition to teaching students about WC modeling and
the systems biology standards, the school aimed to improve
the M. genitalium model and to encode the model in SBML.

A. Submodel encoding

We pursued several strategies to encode submodels in
SBML. Several groups encoded submodels by (1) reading the
original documentation of the model, (2) drawing pathway
diagrams using software tools such as CellDesigner [30] and
VANTED [31], and (3) writing scripts to generate SBML from
the diagrams. Other groups used model design tools such as
Antimony [32], BioUML [33], COBRApy [34], COPASI [35],
iBioSim [36], and libRoadRunner [37] to recode submodels
based on the original documentation. A few of the groups
encoded submodels by converting the MATLAB code to
SBML. As an example, Fig. 1 and File S1 illustrate how we
recoded the transcription submodel.

We encountered several challenges to encoding the submod-
els in SBML. First, understanding the submodels was time-
consuming because many students were not familiar with the
modeled biology, many of the submodel details are described
only in the MATLAB code, and the model documentation
only summarizes the model. For these reasons, J. Karr, one
of the authors of the original model, helped all of the groups
understand the modeled biology and mathematics. Dr. Karr
also helped several groups simplify their encoding tasks by
recommending that they recode only the most important
model components. For example, Dr. Karr suggested that the
transcription group represent the transcription of each RNA
species as a single lumped reaction rather than hundreds of
thousands of individual base elongation reactions. It would
have been challenging to recode the model without Dr. Karr.
The essentiality of Dr. Karr’s guidance underscores the need
for improved WC modeling methods and standards.

Second, it was difficult to encode the original serial and
randomized algorithms into SBML because SBML does not
explicitly represent sequential operations and plain SBML
does not support random number generation. We overcame
these problems by formalizing submodels as Gillespie algo-
rithm stochastic simulations [38].

Third, in many cases, we had to either enumerate the
particle-based state representations used by the original model
or approximate the original model. For example, the translation
group approximated the original model by lumping all of the
elongation reactions for each protein into a single reaction.
The replication group used indicator variables to enumerate
the particle-based chromosome representation from the origi-
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    for i in 1..N
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    Δt ← exponential(P)
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    nRNA j ← nRNA j + 1

Advance time
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Figure 1. Comparison of the original and SBML transcription submodels. (A) The original transcription submodel included two sub-submodels: (1) a Markov
model that describes how RNA polymerase switches among freely diffusing, non-specifically bound, and initiating states and (2) an ad hoc stochastic model
that describes how RNA polymerase initiates transcription, elongates individual bases by walking along DNA, and terminates transcripts. (B) We created the
SBML transcription submodel by simplifying the original submodel. The SBML submodel only represents transcription initiation, elongation, and termination;
lumps the initiation, elongation, and termination of each RNA species into a single reaction; and does not explicitly represent DNA-protein binding. (C) An
equivalent population-based ad hoc stochastic simulation algorithm for the original submodel. The original submodel was implemented using a more efficient
particle-based algorithm. To facilitate comparison with the population-based SBML version, we have described an equivalent population-based algorithm. (D)
We also improved the SBML submodel by replacing the ad hoc stochastic simulation algorithm with the Gillespie algorithm. (E) Statistics of the original and
improved transcription submodels in population-based representations.

nal model. However, this enumerated representation requires
millions of variables, which is prohibitively expensive, and
makes it difficult to represent the exclusion of multiple proteins
from binding the same base. Furthermore, it is impractical to
edit this verbose enumerated representation.

Fourth, we had to enumerate all of the arrays used by the
original model because few SBML simulators support arrays.
This created verbose SBML files that are difficult to interpret
and maintain and slow to simulate.

In summary, we concluded that it is currently difficult to
encode WC models in SBML. WC modeling would be accel-
erated by expanded software support for model composition,
rule-based modeling, arrays, and random number generation.

B. Submodel improvement

We also improved several aspects of the original model. As
described above, we replaced the ad hoc stochastic simulation
algorithms and rate laws used by the original submodels
with the Gillespie algorithm and mass action kinetics. As an
example, Fig. 1 and File S1 compare the original and SBML
versions of the transcription submodel. We anticipate that these

changes will improve the biological accuracy of WC models.
The original model used these ad hoc algorithms and rate
laws to achieve sufficient performance. Going forward, a high-
performance parallel simulator is needed to achieve adequate
performance of the Gillespie algorithm.

C. Model integration

The integration group created a scheme for combining the
submodels. First, they defined the global species as the union
of all submodel species. Second, they standardized the species
names to create consistent submodel-global species interfaces.

Third, the group designed a new multi-algorithm simulation
strategy to overcome the limitations of the original simulation
algorithm. In particular, the group sought to correctly imple-
ment the arrow of time by integrating submodels within the
same time step based on the same input state. The integration
group also sought to develop an algorithm that has a variable
time step that can be optimized to balance accuracy and per-
formance. (1) The group considered sequentially integrating
the submodels within each time step and setting the time
step small enough that only one submodel would advance
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Table II
NEW STANDARDS AND SOFTWARE NEEDED TO ACCELERATE WC MODELING.

Type Description

Database Expanded molecular biological databases such as ChEBI [39]
Software Data curation tools for aggregating the data to build models
Software Pathway/genome database to organize model training data
Standard Sequence- and rule-based multi-algorithmic modeling language
Software Model design tools that generate models from pathway/genome databases
Software Distributed parameter estimation tools
Software Frameworks for systematically verifying model
Software High-performance, parallel, rule-based multi-algorithm simulator
Standard Extended SBGN standard for hybrid maps containing Process Description, Entity Relationship, and Activity Flow nodes
Software Visualization software that supports contextual zooming

the cell state within each time step. However, this strategy is
prohibitively expensive. (2) The group considered generalizing
the original algorithm by dividing each of the global species
pools into multiple, independent sub-species pools for each
submodel; integrating the submodels in parallel; and merging
the sub-species to update the global species. However, it is
difficult to apply this strategy to coupled variables such as
those that represent the protein occupancy of the chromosome.
(3) The group decided to interpret the species changes pre-
dicted by each submodel as requests and implement a central
controller that accepts or rejects these changes at the end of
each time step to update the global species. This strategy is
computationally efficient and generalizable.

Lastly, the group explored implementing this algorithm
using both the SBML hierarchical model composition pack-
age [26] and SED-ML shared variables. The group con-
cluded that both implementations are feasible. The group used
iBioSim to test these strategies because iBioSim is one of
the only SBML-compatible simulators that supports model
composition.

D. Annotation, documentation, and visualization

The documentation group was responsible for annotating
the model. The group aimed to define every model element
independently from external databases and to provide cross
references to databases where possible to help users interpret
the model. For example, they used InChI [40] to define small
molecule species in terms of structures. They defined DNA,
RNA, and protein species as polymers of small molecules.
The group wrote scripts to identify cross references for each
model entity. However, many entities are not represented by
any database. The group contributed the missing metabolite
structures to ChEBI [39] and concluded that the biological
databases must be expanded to help aggregate data for models.

The group also helped the other groups visualize submodels
by providing advice on SBGN and diagramming tools such as
SBGN-ED [41], a VANTED add-on for creating, editing and
validating SBGN diagrams. The main visualization problem
encountered by the group was that WC models require large,
intuitive diagrams that are difficult to lay out automatically.

E. Progress and future work

We produced draft SBML and SBGN versions of the
submodels. However, significant work remains to combine,

identify, and verify the submodels. Using the lessons learned, a
subgroup of the participants are continuing to recode the sub-
models and integrate the submodels into a single model. We
expect that the final model will be more scalable, extensible,
and easy to use than the original model. We also plan to build
an SBML-compatible multi-algorithm simulator by expanding
analysis tools, such as iBioSim and BioUML.

After recoding the model, we plan to identify and validate
the new model. We will validate the model in two steps. (1)
We will use the experimental data that was used to validate
the original model. (2) To more rigorously validate the new
model, we will compare the model to newly published single-
gene deletion strain growth rates [12] that were not available
when the original model was developed.

We aim to publish the SBML-encoded model to BioMod-
els, along with SED-ML tests, SBGN diagrams, and textual
documentation. Publication in BioModels will make the model
searchable, retrievable, and reusable. We believe this valuable
community resource will demonstrate how to describe WC
models in standard formats, and it will help other researchers
build upon the model.

IV. TOWARD SBML-, SED-ML-, AND SBGN-BASED
STANDARDS FOR WC MODELING

The school was the first attempt to encode a WC model
using standards. Thus, we were not surprised to learn that
the current standards and community software do not easily
support WC modeling. Importantly, the school generated ideas
for new WC modeling standards and software that will enable
researchers to build vastly more comprehensive models.

A. New standards

Two new standards are needed to facilitate WC modeling. A
new SBML package should be created to support DNA, RNA,
and protein sequence-based reaction patterns. This would en-
able researchers to easily model sequence-dependent reactions
such as the methylation or protein binding of specific DNA
motifs. This package would also help integrate genomics and
bioinformatics with systems modeling.

SBGN must also be expanded to support (1) hybrid dia-
grams that contain Process Description, Entity Relationship,
and Activity Flow elements and (2) visualizations at multiple
levels of granularity.
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Figure 2. WC modeling workflow. Researchers will (1) assemble data into pathway/genome databases, (2) use these databases to construct models, (3)
identify and verify models, (4) use multi-algorithm simulators to conduct in silico experiments, and (5) analyze these experiments to discover biology.

B. New software tools and databases

Several new software tools and databases are needed to
accelerate WC modeling (Table II). A high-performance simu-
lator must be developed. This simulator should be parallelized
to enable the simulation of vastly larger models that require
more computing and memory than are available on a single
machine. This requires research to determine how to concur-
rently integrate mathematically heterogeneous submodels that
share state. The simulator should leverage recent advances in
parallel discrete event simulation [42].

The simulator must also implement the SBML Multistate
and Multicomponent Species package [43] to support rule-
based modeling. This will enable more succinct model de-
scriptions, making models easier to understand and edit. For
example, translation could be described using a single reaction
pattern parameterized by mRNA-specific translation initiation
rates rather than by enumerating each individual reaction. By
separating mathematical descriptions from parameter values,
reaction patterns will also clarify the connection between
dynamical models and their underlying data. Implementing
this package would also enable modelers to efficiently simulate
models with combinatorial state spaces, which, in turn, will
enable the encoding of more complex models.

Ultimately, to accurately predict phenotypes, WC models
must also represent spatially-dependent processes. Currently,
researchers are independently pursuing WC and spatial mod-
eling. For example, the M. genitalium model only represents
three compartments, and the most advanced spatial models
only represent individual pathways. WC and spatial modeling
should be combined by adding support for the SBML Spatial
Processes package [29] to the new WC simulator.

New model design software must be developed to help
researchers quickly build WC models. This software should
help researchers systematically build WC models from exper-
imental data organized into pathway/genome database. In turn,
this software will help researchers build bigger models.

New data curation tools are needed to aggregate data
to build more comprehensive models. The software should
automatically aggregate data from public databases, as well as
accelerate manual curation from individual publications. This

software will also make WC models more reproducible by
automatically recording each data source. Natural language
processing [44], crowdsourcing [45], and machine learning
should also be explored to accelerate data curation.

New pathway/genome database software is needed to orga-
nize the data required to build WC models. To clarify the
connection between computational models and their under-
lying experimental data, this software should use semantic
annotations to describe how experimental data is used to build
computational models.

New model parameter estimation and model verification
tools are also needed to identify and verify computationally ex-
pensive WC models. To better estimate WC models, we must
generalize our model reduction methods and adopt distributed
numerical optimization techniques [46]. To more systemati-
cally verify WC models, we should adopt formal probabilistic
verification techniques from electrical engineering [47].

New algorithms are needed to automatically create intuitive
visualizations of large networks and the SBGN viewers should
utilize contextual zooming to display diagrams at multiple
levels of granularity.

In addition, biological databases, such as ChEBI, must be
expanded to help researchers annotate WC models in terms of
external entities.

C. Systematic WC modeling pipeline

The new standards and software tools will enable a
five step approach to WC model-driven discovery (Fig. 2).
(1) Researchers will use data curation tools to aggregate
heterogeneous data into pathway/genome databases. These
databases will use semantic annotations to describe the con-
nection between models and their underlying data. (2) Re-
searchers will use design tools to build WC models from
pathway/genome databases. These tools will export models
to software-independent formats such as SBML. (3) Model
identification and verification tools will be used to estimate
parameters and test models. (4) A multi-algorithm simulator
will be used to conduct in silico experiments. (5) Simulation
databases and visualization software such as WholeCellSimDB
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and WholeCellViz will be used to discover new biology by
visualizing and analyzing in silico experiments.

Together, this pipeline will enable more researchers to more
easily build, manage, simulate, and reproduce WC models.
These new tools will also enable researchers to build more
comprehensive models of more complex eukaryotic cells.
Ultimately, this will enable WC modeling to support synthetic
biology and personalized medicine.

V. CONCLUSION

The 2015 Whole-Cell Modeling Summer School trained
young scientists in WC modeling and standards by challenging
them to recode a WC model in SBML. Additional courses
are needed to provide theoretical training in multi-algorithm
modeling, model reduction, and parameter estimation, as well
as practical training in WC model building.

We made significant strides toward recoding the model in
SBML. We also improved the model by replacing the ad hoc
algorithms and rate laws used by the original model with the
Gillespie algorithm and mass action kinetics. We designed an
improved multi-algorithm simulation meta-algorithm. Through
validating the model by comparison to quantitative growth rate
measurements, we anticipate that we will also discover and
add several unknown parallel pathways to the model. We have
produced preliminary SBML versions of all of the submodels
of the M. genitalium model and we are working to develop a
software program to simulate the combined model. We plan
to publish the new SBML-encoded model to BioModels.

Most importantly, our community discussions generated
clear goals for new WC modeling software and standards. We
recommend that researchers develop a new SBML-compatible
simulator that supports both model composition and sequence-
and rule-based modeling, as well as develop new model
design, parameter estimation, model testing, and visualization
tools. We also recommend expanding the biological databases
to facilitate model building and annotation. Furthermore, we
believe that SBGN should be extended to support hybrid
diagrams, advanced graph layout, and contextual zooming.
Lastly, we recommend evaluating CellML as another potential
WC modeling standard.

In summary, we believe that WC modeling will be an
important tool for biological science, bioengineering, and
medicine. Achieving this potential requires new WC modeling
software and standards. In turn, this requires expanding the
WC modeling field, including training young researchers.
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