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Abstract

Canagliflozin is an SGLT2 inhibitor prescribed for the management of type 2 diabetes mellitus, lower-
ing blood glucose by increasing urinary glucose excretion (UGE). However, pharmacokinetic (PK) and
pharmacodynamic (PD) responses vary across patient populations, complicating dose selection under
altered organ function. Here, we developed a whole-body PBPK/PD digital twin of canagliflozin that
integrates absorption, distribution, metabolism, and excretion, and explicitly models renal glucose
handling. The model represents canagliflozin and its major metabolites (M5, M7, M9) and was cali-
brated and evaluated using curated PK/PD data from 22 clinical studies spanning healthy individuals,
patients with type 2 diabetes, and cohorts with renal or hepatic impairment. Simulations reproduced
dose-dependent exposure and UGE across single- and multiple-dose regimens. Renal impairment pro-
duced modest changes in parent drug exposure but markedly reduced UGE and increased metabolite
exposure, consistent with reduced glucose filtration and impaired metabolite clearance. Under hepatic
impairment, simulations predicted increased canagliflozin exposure with altered metabolite profiles,
while PD effects were minimal, although evaluation was limited by sparse clinical PD endpoints.
All model files, simulation scripts, and curated datasets are provided in open SBML workflows in
accordance with FAIR principles, enabling reproducible simulations and reuse for model-informed
analyses of canagliflozin PK/PD variability.

Keywords: digital twin; canagliflozin; type 2 diabetes mellitus; physiologically based pharmacoki-
netic/pharmacodynamic model (PBPK/PD); pharmacokinetics; pharmacodynamics; personalized
medicine

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder and a major global health
challenge. Persistent hyperglycemia can lead to severe complications, and many patients do not achieve
sustained glycemic control despite the availability of multiple glucose-lowering therapies [1,2]. These
challenges highlight the continued need for effective and well-characterized therapeutic strategies.

The kidney is central to glucose homeostasis by reabsorbing nearly all filtered glucose within the
proximal tubule [3]. This process is mediated mainly by the sodium-glucose co-transporter 2 (SGLT2,
90%) and to a lesser extent by the sodium-glucose co-transporter 1 (SGLT1, 10%) [4,5]. Inhibition
of SGLT2 lowers the renal threshold for glucose (RTG), thereby increasing urinary glucose excretion
(UGE) and reducing plasma glucose concentrations [5]. This insulin-independent mechanism has been
successfully exploited by SGLT2 inhibitors [6].

Canagliflozin is an orally active SGLT2 inhibitor approved for the treatment of adults with
T2DM. Clinically, canagliflozin is administered once daily at doses of 100-300 mg, with dosing guided
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primarily by renal function and therapeutic response [7]. It is characterized by oral efficacy and
sustained glucose-lowering effects.

The pharmacokinetics of canagliflozin are well characterized. Following oral administration,
it is rapidly absorbed, reaching peak plasma concentrations within 1-2 h, and exhibits a terminal
half-life of approximately 11-15 h [5]. Canagliflozin is predominantly metabolized by uridine 5'-
diphospho-glucuronosyltransferases UGT1A9 and UGT2B4 to the inactive O-glucuronide metabolites
M7 and M5, respectively, with a minor oxidative pathway via cytochrome P450 3A4 (CYP3A4) forming
the hydroxylated metabolite M9 [5,6]. Several other metabolites have been identified, but these
are generally considered to be of low significance and not major human metabolites. Most of the
administered dose is recovered in feces as unchanged canagliflozin and M9, whereas urinary excretion
occurs primarily in the form of the metabolites M5 and M7 [5,6]. Pharmacodynamically, canagliflozin
produces dose-dependent increases in UGE, reflecting inhibition of renal glucose reabsorption.

Patients with T2DM exhibit substantial inter-individual variability in response to canagliflozin.
Clinical studies have shown that renal and hepatic function can significantly influence the pharma-
cokinetics and pharmacodynamics of canagliflozin. Renal impairment increases systemic exposure to
canagliflozin and its metabolites, while simultaneously reducing filtered glucose and UGE, leading
to diminished glycemic efficacy [8]. Hepatic impairment can alter the formation and elimination of
glucuronide metabolites, although effects on parent drug exposure are generally considered moderate
in patients with mild to moderate impairment [9]. However, data on patients with severe hepatic
impairment remain limited, and the impact on systemic exposure and therapeutic response is not
well characterized. Consequently, dose recommendations for canagliflozin in the setting of hepatic
dysfunction are less well defined. Together, these pathophysiological factors complicate dose selection
in patients with impaired organ function. The impact of different dosing strategies in these populations
cannot be comprehensively evaluated in clinical trials alone, highlighting the need for mechanistic
approaches to assess drug exposure and response across diverse patient groups [6].

Several computational models of canagliflozin have been published, including population PK and
PK/PD analyses, mechanistic PBPK and quantitative systems pharmacology models, and model-based
meta-analyses addressing exposure-response relationships and class-wide glycemic effects [10-16].
While these studies provided valuable insights, they generally addressed specific sub-questions
in isolation and did not offer an integrated, physiologically consistent description of canagliflozin
pharmacokinetics and pharmacodynamics across populations.

A major limitation of existing canagliflozin models is their limited reusability and reproducibility.
Most models are not openly available: the underlying software is closed, executable code is not
provided, curated clinical datasets are inaccessible, and models and workflows do not follow FAIR
principles. As a consequence, independent reproduction, long—term preservation, and systematic
extension of these models are not ensured. In addition, many existing models rely on restricted or
narrowly defined datasets, limiting their applicability across patient populations and clinical scenarios.
Together, these limitations severely hamper reuse, cross—validation, and cumulative model develop-
ment. A systematic overview of existing canagliflozin models, including their scope, availability, and
reproducibility, is provided in Supplementary Table S1.

Reproducibility is a broader challenge in systems biology [17] and PBPK modeling more gener-
ally [18], with many published models lacking accessible equations, data, or executable workflows. To
address these challenges, we developed the present model in accordance with FAIR principles [19]
and Open Science practices, ensuring that all model files, simulation code, and curated datasets are
openly available and reusable.

Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling provides a
quantitative framework to integrate physiological, biochemical, and drug-specific data. By representing
the processes of absorption, distribution, metabolism, and excretion (ADME) in mechanistic detail, such
models can simulate the impact of organ dysfunction, and other patient-specific factors on exposure
and response, offering insights beyond what can be obtained from clinical trials alone [20-22].
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Here, we present a fully reproducible digital twin of canagliflozin developed using published
clinical data from 22 studies (Table 1), including healthy individuals, patients with T2DM, and
individuals with renal or hepatic impairment. The model is a physiologically based whole-body
PBPK/PD framework that explicitly represents canagliflozin and its major metabolites M5, M7, and
M9, as well as the key organs involved in absorption, metabolism, and elimination, in particular
intestine, liver, and kidney, which are linked through the systemic circulation and renal glucose
handling.

All clinical data are stored in a curated database, and the model is implemented in SBML [23]
to ensure transparency and reproducible simulations. The digital twin was calibrated and evaluated
across multiple datasets and applied to systematically investigate the effects of dose, renal impairment,
and hepatic impairment on canagliflozin pharmacokinetics and pharmacodynamics. The model
reproduces canagliflozin exposure and renal glucose handling across a wide range of clinical scenarios
and quantitatively links parent drug and metabolites to pharmacodynamic response under normal and
impaired organ function. This framework provides a mechanistic basis for analyzing inter-individual
variability in drug response and supports future model-informed dose optimization.

2. Materials and Methods

The digital twin of canagliflozin was developed as a PBPK/PD model through a systematic work-
flow combining clinical data curation, mechanistic modeling, and in silico simulations. This involved
a structured literature search, development an SBML-based model, parameter optimization with
selected data subset, and simulation experiments reflecting clinical trial conditions. Pharmacokinetic
and pharmacodynamic outcomes were then analyzed to characterize drug disposition and variability
across physiological, pathophysiological and prandial states.

2.1. Systematic Literature Research and Data Curation

A systematic literature search was conducted to compile studies that reported pharmacokinetic
and pharmacodynamic data of canagliflozin. PubMed was queried on 2024-07-02 using the terms
canagliflozin AND pharmacokinetics, and the PKPDAI database was screened in parallel [24]. The
clinical studies encompassed a diverse cohort of participants, including healthy volunteers, patients
diagnosed with type 1 or type 2 diabetes, and studies investigating renal or hepatic impairment.
Pediatric studies, animal studies, and reports lacking sufficient data were excluded from the analysis.
The Supplementary Materials Figure S1 provides an overview of the literature review process. Data
from eligible studies were curated in the open pharmacokinetics database PK-DB [25]. Information
on demographics, disease status, dosing protocols, plasma and urine concentration-time profiles
of canagliflozin and its metabolites, and pharmacodynamic outcomes such as UGE were extracted
according to established protocols [25]. Figure-based data were digitized using WebPlotDigitizer [26],
while tabular and textual data were reformatted into standardized PK-DB formats [25]. The curated
dataset, including patient and study characteristics, dosing regimens, and PK/PD outcomes, provided
the basis for PBPK/PD model development and is publicly available via PK-DB and within the model
files. An overview of the curated studies is available in Table 1.

2.2. Computational Model

The PBPK/PD model was developed in the Systems Biology Markup Language (SBML) [23,27].
Programmatic model construction and visualization were performed using the sbmlutils [28] and
cy3sbml [29,30] libraries. Numerical solutions of the underlying ordinary differential equations
(ODEs) were obtained with sbmlsim [31], powered by the high-performance SBML simulation engine
libRoadRunner [32,33]. The complete model, including simulation scripts and documentation, is
available in SBML format under a CC-BY 4.0 license via GitHub (https:/ /github.com/matthiaskoenig/
canagliflozin-model) and archived on Zenodo 0.7.0 [34].

The model comprises a whole-body framework with submodels for the intestine, liver, and
kidney, linked through the systemic circulation (Figure 1) to characterize canagliflozin absorption,
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distribution, metabolism, and excretion. The model has a hierarchical structure, with the whole-body
model linking the individual organ submodels.
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Figure 1. Whole-body PBPK/PD model of canagliflozin and key factors influencing its disposition. A)
Whole-body model showing canagliflozin (CAN) administration (oral and intravenous), systemic circulation,
and key organs (liver, kidney, GI tract) involved in metabolism, distribution, and excretion. B) Intestine model
illustrating CAN absorption by enterocytes and fecal excretion, accounting for approximately 51.7% of the
dose, primarily as parent drug and to a lesser extent as metabolites M7 and M9. C) Hepatic model showing
CAN uptake by hepatocytes and conversion to the primary metabolites M5 and M7 via UGT2B4 and UGT1A9,
respectively, with minor oxidative metabolism to M9 via CYP3A4. Metabolites M7 and M9 are excreted into bile
and enter the intestinal lumen. D) Renal model showing uptake and urinary excretion of CAN, M5, and M7, renal
metabolic conversion of CAN to M7 via UGT1A9, and CAN-mediated inhibition of SGLT2, reducing renal glucose
reabsorption and increasing UGE. E) Key factors influencing CAN disposition included in the model include
administered dose, renal impairment, and hepatic impairment (cirrhosis).

9

Key ADME processes include intestinal absorption, hepatic glucuronidation by UGT2B4 and
UGT1A9 to form the major metabolites M5 and M7, respectively, and minor oxidative metabolism via
CYP3A4 to form M9. The kidney submodel captures both metabolic and excretory processes, including
additional renal glucuronidation by UGT1A9 and urinary excretion of canagliflozin and its metabolites
M5 and M7. The pharmacodynamic component links canagliflozin plasma concentrations to UGE
through inhibition of renal glucose reabsorption in the proximal tubule, parameterized by fasting
plasma glucose and the RTG. Mathematical descriptions of the submodels and corresponding ordinary
differential equations are provided in the Supplementary Materials Section S4.

Fractional organ volumes and blood flows were taken from literature sources [20]. The fractional
compartment volumes were set to FVgy = 1.71 % for the gut, FVi; = 0.44 % for the kidneys, FV}; =
2.10 % for the liver, and FVj,, = 0.76 % for the lungs. Fractional blood flows were defined as FQgu =
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18.00 % for the gut, FQy; = 19.00 % for the kidneys, FQ}, = 21.50 % for the hepatic venous outflow, and
FQyu = 100 % for the lungs. Absolute organ volumes and blood flows were calculated by scaling the
corresponding fractional values with body weight.

Tissue-to-plasma partition coefficients were assumed to be identical across all tissues for
canagliflozin and its glucuronide metabolites. Fixed values of Kp“AN = 1.00, KpM> = 11.59, and
KpM7 = 217.43 were used. No tissue-to-plasma partition coefficient was defined for the minor metabo-
lite M9. Transport processes of canagliflozin and its metabolites in the liver and kidneys were modeled
explicitly.

Several key factors influencing pharmacokinetic and pharmacodynamic variability were imple-
mented as scaling parameters.

Renal impairment was modeled as a progressive decline in renal function using the factor fien,,
which was applied to glomerular filtration rate (GFR) and renal clearance of parent drug and metabo-
lites. Scaling values were mapped from KDIGO categories: normal (eGFR >90 ml/min, fiena = 1.00),
mild (GFR 50-89 ml/min, fiena = 0.69), moderate (GFR 30-49 ml/min, fiena = 0.32), severe (GFR
<30 ml/min, frenar = 0.19), derived from KDIGO guidelines and related modeling studies [35,36].

Hepatic impairment was modeled using the scaling factor f;;h0sis, representing reduced func-
tional liver parenchyma and blood shunting. Scaling values were mapped to Child-Turcotte-Pugh
(CPT) classes: A (mild: 5-6 points, fhesis = 0.40), B (moderate: 7-9 points, f irrhosis = 0.70), and C
(severe: 10-15 points, f.jihesis = 0.80) [37-40].

Subject- and study-specific physiological and clinical parameters were incorporated when avail-
able, including body weight, glomerular filtration rate to adjust renal function, and fasting plasma
glucose for the pharmacodynamic component.

Multiple-dose regimens were implemented by stepwise numerical integration between dosing
intervals, with dosing events applied according to the study-specific protocols. Oral and intravenous
doses were specified using the parameters PODOSEan and IVDOSEan, respectively. Simulation time
horizons and post-dose sampling windows were selected to match the corresponding clinical study
designs.

All simulations were performed deterministically using the optimized parameter set representing
the typical (mean) individual. Inter-individual or between-subject variability was not included, as
the objective was to evaluate typical pharmacokinetic and pharmacodynamic behavior across studies
rather than to perform population-based variability analyses.

2.3. Model Assumptions

Additional details on model equations and assumptions are provided in Supplementary Mate-
rial 54. The key model assumptions and simplifications are summarized below.

¢ Canagliflozin absorption was modeled as a first-order process.

¢ Diurnal variation in plasma glucose concentrations was not modeled explicitly. Instead, a constant
fasting plasma glucose (FPG) concentration was assumed and used for the calculation of UGE.
When reported, study-specific FPG values were used. Otherwise, FPG values of 5 mM for healthy
subjects, 8.0 mM for subjects with T1DM, and 8.0 mM for subjects with T2DM were assumed.

*  The RTG was parameterized using parameter optimization, with optimized values reported in
Supplementary Table S3.

¢ Renal filtration and tubular glucose reabsorption were not modelled explicitly. Renal elimination
of canagliflozin (CAN) and its metabolites was instead described using first-order processes,
depending on kidney volume, renal function (GFR), and compound-specific excretion rate con-
stants. The parameters KI__CANEX_k, KI__M5EX_k and KI__M7EX_k were estimated via parameter
optimization.

®  The conversion of CAN to M5 by UGT2B4 and to M7 by UGT1A9 in the liver and kidneys was
modelled using irreversible Michaelis-Menten kinetics.
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2.4. Model Parameterization

A subset of curated data from healthy subjects, patients with T2DM, and individuals with
renal impairment following single-dose administration was used to optimize parameters using a
local standard optimizer, with the optimal parameters used in the final model. The final optimized
parameter set was applied consistently across all subsequent simulations without further study-specific
refitting. Optimized parameter values and optimization diagnostics are reported in the Supplementary
Materials Section S5, including fitted pharmacokinetic and pharmacodynamic parameter sets as well
as convergence behavior and goodness-of-fit assessments for both model components.

The cost function, defined as a function of the parameter vector j, minimized the sum of squared,
weighted residuals r; ; across all time courses k and data points i. Time courses were weighted by the
number of participants in each study 7y, and individual time points were weighted by the inverse of
the associated measurement uncertainty, represented by the standard deviation ¢; . This resulted in
weights w; . = ny/o; .

F(p) =05 Zk(wi,k k()%
i,
The weighting by uncertainty weights data points with smaller uncertainty higher, the weighting by
participants weights data points depending on the number of subjects.

Multiple optimization runs (n = 100) were performed using different initial parameter values.
Optimization was conducted sequentially: pharmacokinetic parameters were estimated first, followed
by pharmacodynamic parameters.

2.5. Simulations

For each curated clinical study (Table 1), a corresponding in silico experiment was implemented to
reproduce the reported dosing regimen and study conditions. Parameters for oral and intravenous
dosing, prandial state, bodyweight, fasting plasma glucose, and renal or hepatic function were
adjusted according to study-specific information. Multiple dosing protocols were incorporated where
applicable.

To further explore sources of variability, simulation experiments and parameter scans were
performed across physiologically relevant ranges for renal function, hepatic function, and dose to
enable systematic evaluation of the influence of key physiological and pathophysiological parameters
on PK/PD outcomes.

2.6. Pharmacokinetic and Pharmacodynamic Parameters

Pharmacokinetic parameters of canagliflozin and its metabolites were calculated from plasma
concentration-time curves and urinary excretion using standard non-compartmental methods. Phar-
macodynamic outcomes were evaluated in terms of UGE, calculated from the simulated plasma
concentration-time courses in combination with fasting plasma glucose and the renal threshold for
glucose. Simulated profiles and derived pharmacokinetic and pharmacodynamic parameters were
compared against the curated clinical data.

2.7. Sensitivity Analysis

The influence of model parameters on pharmacokinetic (PK) and pharmacodynamic (PD) out-
comes was assessed using sensitivity analysis. A reference simulation corresponding to a single oral
dose of 200 mg canagliflozin was used. PK readouts comprised the area under the concentration-
time curve (AUC), maximum concentration (Cpax), half-life, volume of distribution (Vy), clearance
(CL), and elimination rate constant (k) for canagliflozin, as well as AUC, Cnnax, and half-life for its
metabolites M5 and M7. PD readout was urinary glucose excretion (UGE) at 24 hours. Parameters
representing physical constants, unit conversion factors, and dosing parameters were excluded from
the analysis. Results are reported in Supplementary Materials, Section S7.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.7.1. Sampling-Based Sensitivity Analysis

To quantify uncertainty in PK and PD outcomes arising from variability in model parameters,
a sampling-based uncertainty analysis was performed. Model parameters were sampled uniformly
within their predefined bounds using Latin hypercube sampling (LHS). A total of n = 1000 simulations
were conducted, and the resulting distributions of PK and PD readouts were used to characterize
parameter-induced uncertainty.

2.7.2. Local Sensitivity Analysis

Local sensitivities were computed by perturbing each parameter p; individually by £1 % relative
to its reference value p; (. Sensitivities were calculated using a symmetric midpoint approximation,

a(p) — ae(p;)
S(qx, pi) = L e
P —p;

where pii = pio- (1 £0.01). Sensitivities were subsequently normalized to obtain dimensionless
measures,
a(pi) —ak(py) P
¥ _ - Y
pi pi qk(pl,(])

representing the relative change in the model output per relative change in the parameter. Normalized

Snorm(‘]k/ Pl) =

sensitivities with absolute values below 0.1, as well as parameters without measurable effects on any
PK or PD readout, were omitted from the heatmap visualization. For clarity, sensitivity matrices were
hierarchically clustered by model parameters using single-linkage clustering.

2.7.3. Global Sensitivity Analysis

Global sensitivity analysis was performed using variance-based Sobol indices [41-43], as imple-
mented in SALib [44,45]. First-order (S1) and total-effect (St) indices were computed. Parameters with
S1 and St values below 0.05, as well as parameters without measurable effects on any readout, were
omitted from the heatmap visualization. Samples were generated using Saltelli’s extension of the
Sobol’ sequence with n = 4096 base samples.

3. Results
3.1. Canagliflozin Database

An extensive database of canagliflozin’s pharmacokinetics and pharmacodynamics was created
to develop and validate the model. A systematic literature search initially yielded 152 records. After
screening according to predefined inclusion and exclusion criteria, 22 studies were selected for detailed
curation and formed the core dataset used to evaluate the PBPK/PD model. See Supplementary
Materials Figure S1 for the study selection process. All curated pharmacokinetic and pharmacodynamic
data of the 22 studies are publicly available in the model files and in the PK-DB database with unique
study identifiers as referenced in the manuscript (Table 1).

3.2. Computational Model

Using the curated dataset, a digital twin in the form of a PBPK/PD model was developed to
describe the ADME of canagliflozin and its primary metabolites, as well as its pharmacodynamic
effect on UGE (Figure 1). The complete model, including simulation scripts and documentation, is
available in SBML format under a CC-BY 4.0 license via GitHub (https:/ /github.com/matthiaskoenig/
canagliflozin-model) and archived on Zenodo 0.7.0 [34].

Simulations followed the respective clinical study designs, accounting for single- and multiple-
dose regimens, and renal or hepatic impairment. All simulations are provided in Supplementary
Materials Section S6 (Figures S7-567).
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The final parameter set is summarized in the Supplementary Materials Tables S2 and S3. Parameter
convergence and goodness-of-fit metrics are shown in the Supplementary Materials Figure S5 and S6.
All submodel visualizations are provided in Supplementary Materials Section S3 (Figures 52-54), and
all model equations and ODEs are given in Supplementary Materials Section S4.

3.3. Dose Dependency

The pharmacokinetic and pharmacodynamic effects of canagliflozin over an oral dose range of
0-800 mg are shown in Figures 2 and 3. With increasing doses, plasma concentrations of canagliflozin
and its primary metabolites increased, as did the amounts excreted in urine and feces. Canagliflozin
reached peak plasma levels after approximately 3.5 h and has a half-life of approximately 8 h, whereas
the metabolites showed a slightly delayed peak and elimination. The parameter scan showed a clear
dose-dependent rise in exposure metrics (AUC(_jn and Cmax), while Tax and half-lives remained
largely unchanged. Higher doses of canagliflozin were associated with lower RTG and a nonlinear
increase in urinary glucose excretion.
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Figure 2. Dose-dependent pharmacokinetics and pharmacodynamics of canagliflozin. A) Oral dose range
(0-800 mg). B) Pharmacokinetic time courses of canagliflozin in plasma, urine, and feces, and of metabolites M5
and M7 in plasma. C) Pharmacokinetic parameters (AUCy_inf, Cmax, Tmax, and half-life) for canagliflozin, M5,
and M7, and 24 h UGE; observed parameters overlaid where available. D) Comparison of simulations with study
data [46-50]. Simulations are shown as solid lines and study data as symbols with SDs where available.
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Figure 3. Additional dose-dependent clinical studies of canagliflozin. Comparison of simulations with clinical
studies [51-54]. Simulations are shown as solid lines, and study data are shown as dashed lines with squares and
SDs where available.

Time-course simulations were performed for all curated clinical dose-dependency studies
(Chen2015 [46], Devineni2012 [47], Devineni2013 [48], Devineni2015a [49], Devineni2016 [50],
lijima2015 [51], Sha2011 [52], Sha2014 [53], Tamborlane2018 [54]). Simulated canagliflozin, M5 and M7
plasma concentrations, urinary excretion, and UGE are shown for both single dose and multiple dose
regimens.

3.4. Renal Impairment

The impact of renal impairment on canagliflozin disposition and pharmacodynamics is shown in
Figure 4. Simulations were performed for four renal function groups (normal, mild, moderate, severe).
Plasma concentrations of canagliflozin were minimally affected by renal dysfunction, whereas exposure
to its main metabolites increased with declining renal function. Urinary excretion of canagliflozin,
M5 and M7 decreased with impairment, while fecal excretion remained unchanged. Across renal
function states, parent AUCy_j¢ and Cmax changed modestly, while metabolite exposure increased
with impairment.
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Figure 4. Effect of renal impairment on pharmacokinetics and pharmacodynamics of canagliflozin. A) Renal
function categories from normal to severe impairment used in simulations. B) Pharmacokinetic time courses of
canagliflozin in plasma, urine, and feces, and of metabolites M5 and M7 in plasma. C) Pharmacokinetic parameters
(AUC)_inf, Cmax, Tmax, and half-life) for canagliflozin, M5, and M7, and 24 h UGE; observed parameters overlaid
where available. D) Comparison of simulations with study data [9,55]. Simulations are shown as solid lines, and
study data as symbols with SDs where available.

The pharmacodynamic response showed a reduction in UGE with declining renal function, while
RTG changed slightly. In severe impairment, simulated UGE was clearly lower than under normal
function, whereas RTG was only minimally affected.

Simulated parent and metabolite plasma time courses and urinary excretion profiles across renal
function groups are shown together with clinical data available from two studies (Devineni2015c [9]
and Inagaki2014 [55]). Fecal excretion data were not available for direct comparison.

3.5. Hepatic Impairment

The effect of hepatic impairment on canagliflozin pharmacokinetics and pharmacodynamics is
summarized in Figure 5. Simulations were performed for normal liver function and for mild, moderate,
and severe cirrhosis. With increasing hepatic impairment, canagliflozin plasma exposure increased,
reflected by higher Ciax values, increased AUC)_j,¢, and a prolonged plasma time course. Urinary
excretion of canagliflozin increased with higher plasma exposure, while fecal excretion of the parent
drug remained unchanged across hepatic function states.
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Figure 5. Effect of hepatic impairment on pharmacokinetics and pharmacodynamics of canagliflozin. A)
Liver function categories used in simulations. B) Pharmacokinetic time courses of canagliflozin in plasma, urine,
and feces, and of metabolites M5 and M7 in plasma. C) Pharmacokinetic parameters (AUC(_inf, Cmax, Tmax,
and half-life) for canagliflozin, M5, and M7, and 24 h UGE; observed parameters overlaid where available. D)
Comparison of simulations with study data [9]. Simulations are shown as solid lines, and study data as symbols
with SDs where available.

For the metabolite M5, plasma concentrations decreased with increasing hepatic impairment,
with reductions in both Cppax and AUC. In contrast, M7 showed a reduced peak concentration but a
prolonged exposure, resulting in lower Cpax values and increased AUC with increasing severity of
cirrhosis. Time to maximum concentration (Tmax) was stable for canagliflozin, M5, and M7 across all
hepatic impairment categories. Parameter scans showed an increase in half-life for the parent drug
and both metabolites with increasing hepatic impairment, without a linear relationship to cirrhosis
severity.

Pharmacodynamic effects were minimal. UGE remained largely unchanged across hepatic
function states. Simulated plasma concentration time courses and urinary excretion profiles for
canagliflozin, M5, and M7 under different degrees of hepatic impairment are shown together with
clinical data from Devineni2015c¢ [9].

Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202601.2095.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2026

12 of 19

Table 1. Summary of studies for modeling. Overview of study identifiers, PK-DB IDs, PMID, route, dosing, and subject characteristics, including health status, renal impairment, hepatic impairment

and T2DM.
Study PK-DB PMID Route Dosing Dose [mg] Healthy Renal impairment Hepatic T2DM
impairment
Chen2015 [46] PKDB00858 26048186 PO single 100, 300 v
Devineni2012 [47] PKDB00874 22226086 PO single, multi 100, 300 v
Devineni2013 [48] PKDB00875 23670707 PO single, multi 50, 100, 300 v
Devineni2014 [56] PKDB00879 24726680 PO multi 300 v
Devineni2015 [57] PKDB00880 27140803 PO single 300 v
Devineni2015a [49] PKDB00876 25500487 PO single, multi 50, 100, 300 v
Devineni2015b [58] PKDB00877 27136910 PO, IV single 0.010, 300 v
Devineni2015c [9] PKDB00881 25659911 PO single 300 v v v
Devineni2015d [59] PKDB00882 25407255 PO single, multi 300 v
Devineni2015e [60] PKDB00883 27136908 PO single 50, 100, 300 Ve
Devineni2016 [50] PKDB00884 26687552 PO single 200, 300 v
lijima2015 [51] PKDB00885 26280756 PO single, multi 25,100, 200, 400 v
Inagaki2014 [55] PKDB00878 25200141 PO single 100, 200 v v
Kinoshita2015 [61] PKDB00886 25424014 PO single, multi 200 v
Mamidi2014 [62] PKDB00887 24568888 PO single 188 v
Mohamed2019 [63] PKDB00888 31384829 PO single 50 v
Murphy2015 [64] PKDBO00857 25546166 PO single 150 v
Sha2011 [52] PKDB00889 21457428 PO single, multi 10, 30, 100, 200, 400, 600, v
800
Sha2014 [53] PKDB00890 25166023 PO single, multi 30, 100, 200, 300, 400 v
Sha2015 [65] PKDB00891 25421015 PO multi 300 v
Tamborlane2018 [54] PKDB00892 29271103 PO multi 100, 300 v
Wattamwar2020 [66] PKDB01127 32763846 PO multi 150 v
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4. Discussion

In this study, we established a comprehensive clinical dataset of canagliflozin pharmacokinetics
and pharmacodynamics and used it to develop a mechanistic PBPK/PD digital twin. In total, 22
clinical trials were curated, covering a broad spectrum of dosing regimens and study populations,
including healthy individuals, patients with type 2 diabetes, and cohorts with renal and hepatic
impairment. Overall, data availability was sufficient for model development and evaluation, with
consistent reporting of plasma concentration time courses, urinary excretion, and UGE across both
single dose and multiple dose designs. Fecal excretion data and RTG related endpoints were sufficient
to support model calibration and validation.

The PBPK/PD framework integrates systemic distribution, hepatic metabolism, and renal elimi-
nation into a coherent representation of canagliflozin disposition and pharmacodynamic effect. Robust
parameter optimization and good agreement between simulations and observed data across a wide
range of studies support the reliability of the model. A key strength of this mechanistic approach is
its ability to investigate scenarios that are difficult to address systematically in clinical trials, such as
direct comparisons between renal and hepatic impairment or controlled exploration of dose dependent
behavior across physiological states. Pharmacodynamic effects are driven by plasma canagliflozin
concentrations through inhibition of SGLT2, resulting in a modulation of RTG and a mechanistic,
physiologically interpretable link between exposure and UGE.

The simulations reproduced the expected dose dependent pharmacokinetic and pharmacody-
namic behavior of canagliflozin, with increasing doses leading to higher plasma exposure and greater
UGE. Across the investigated dose range, time to maximum concentration and elimination half life
remained largely unchanged, indicating dose proportional kinetics within the therapeutic window. The
modeled dose dependent increase in UGE reflects progressive inhibition of renal glucose reabsorption
and is consistent with the observed nonlinear relationship between exposure and pharmacodynamic
response reported in clinical studies.

The pharmacokinetics and pharmacodynamics of canagliflozin under conditions of hepatic impair-
ment are less extensively characterized than in other clinical populations. Evaluation in this setting was
constrained by the availability of clinical data, as only one study reported plasma concentration-time
profiles. Corresponding pharmacodynamic measurements, including UGE and RTG, were not re-
ported, which limited direct assessment of pharmacodynamic effects. In addition, the available plasma
concentration—time profiles exhibited substantial variability, complicating quantitative comparisons
between simulations and observations.

Clinical observations under hepatic impairment showed little to no change in parent canagliflozin
plasma exposure across degrees of liver dysfunction. In contrast, metabolite behavior differed, with
increased plasma exposure of M7, while M5 profiles were noisy and did not exhibit a consistent
systematic trend. Model simulations predicted increased parent canagliflozin exposure with worsening
hepatic impairment, reflecting reduced hepatic metabolic capacity. In parallel, simulated M5 exposure
decreased due to diminished hepatic formation, whereas M7 showed prolonged exposure driven by
reduced clearance and the additional formation pathway in the kidney. As a result, the clinical parent
drug exposure was not fully reproduced by the model, and agreement for metabolite profiles remained
qualitative and limited by data variability.

Renal metabolism was represented as part of the mechanistic model structure. Published studies
report renal formation of M7, and this pathway was therefore implemented in the kidney submodel.
Inclusion of renal M7 metabolism improved agreement between simulations and clinical data, particu-
larly for urinary excretion and, to a lesser extent, for plasma concentration-time profiles. In contrast,
renal metabolism of M5 was not implemented, consistent with reports indicating negligible renal
conversion despite expression of the corresponding UGT enzymes in kidney tissue [67].

Despite these considerations, discrepancies between simulations and clinical observations per-
sisted under hepatic impairment. These findings suggest that additional processes may contribute to
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canagliflozin disposition, for example altered renal handling, extrahepatic metabolism, or compen-
satory clearance pathways that are not captured by the current model.

Renal impairment had a pronounced influence on the pharmacodynamics of canagliflozin and
represented an important source of variability in treatment response. Evaluation in this population
was supported by two clinical studies reporting both pharmacokinetic and pharmacodynamic mea-
surements. Across levels of renal impairment, parent canagliflozin plasma exposure changed only
modestly, whereas exposure to the major metabolites increased with declining renal function. This pat-
tern is consistent with reduced renal elimination of the metabolites, indicating that systemic exposure
to the parent drug is relatively resistant to moderate reductions in renal function. The PBPK/PD model
reproduced these trends, supporting the mechanistic representation of renal clearance pathways.

Unlike the limited pharmacokinetic changes, renal impairment strongly affected the pharma-
codynamic effects. Both clinical data and simulations revealed a significant decrease in UGE as
renal function declined, despite relatively stable parent drug concentrations. These results highlight
the dependence of the pharmacodynamic response on renal glucose filtration and tubular handling,
emphasizing the critical role of kidney function in determining the efficacy of SGLT2 inhibition.

Agreement between simulations and clinical observations under renal impairment was generally
stronger than for hepatic impairment. Although the available studies were restricted to single-dose
regimes, the presence of plasma, urinary, and pharmacodynamic endpoints allowed evaluation of both
exposure and response. The consistent reproduction of these trends across renal function categories
supports the validity of the renal impairment implementation within the PBPK/PD framework.

Future work should focus on improving the breadth and consistency of clinical data available for
evaluating canagliflozin under organ impairment. In particular, more comprehensive pharmacoki-
netic and pharmacodynamic reporting under hepatic impairment is needed to enable mechanistic
interpretation beyond plasma exposure alone. Standardized measurement of UGE and RTG would
substantially strengthen assessment of pharmacodynamic behavior in this setting.

Although the model performed more robustly under renal impairment, the available evidence
remains limited. A wider range of renal function datasets, including multiple-dose regimens and
aligned pharmacokinetic and pharmacodynamic endpoints, would further support the refinement
and validation of the model. Systematic reporting across impairment studies would enhance the
utility of mechanistic PBPK/PD models and improve the general understanding of drug behavior and
therapeutic response in patients with altered organ function.

Beyond the pharmacological findings, this study also addresses a broader challenge in compu-
tational pharmacology and systems biology related to model transparency and reproducibility. A
substantial fraction of published PBPK models cannot be independently reproduced because essential
components, such as model equations, executable code, and curated calibration datasets, are not pub-
licly available [17,18]. This limits independent verification and substantially restricts reuse, extension,
and cumulative model development within the community.

To address these limitations, reproducibility and accessibility were treated as core design princi-
ples in the present work. The complete modeling framework, including the SBML model, simulation
scripts, and curated clinical datasets, is openly available and structured in accordance with FAIR
principles [19,68]. This enables independent reproduction, transparent evaluation, and systematic
reuse of the model across different contexts. All resources are released under permissive MIT and
CC-BY licenses, lowering barriers to reuse in both academic and industrial settings and allowing
straightforward integration into existing workflows, including commercial applications.

In summary, this PBPK/PD digital twin of canagliflozin integrates diverse clinical data into a
mechanistic framework that captures key pharmacokinetic and pharmacodynamic behavior across
dosing regimens and patient populations. The model provides quantitative insight into dose depen-
dency and the effects of organ impairment, supporting analysis of variability in drug response under
clinically relevant conditions. By providing full open access to the model, simulation code, and curated
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datasets, this work establishes a transparent and reproducible reference framework that supports
independent validation, reuse, and future PBPK/PD model development.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper
posted on Preprints.org.
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