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ARTICLE INFO ABSTRACT

Here we present Tellurium, a Python-based environment for model building, simulation, and analysis that fa-
cilitates reproducibility of models in systems and synthetic biology. Tellurium is a modular, cross-platform, and
SBML open-source simulation environment composed of multiple libraries, plugins, and specialized modules and
Software . methods. Tellurium is a self-contained modeling platform which comes with a fully configured Python dis-
Systems biology tribution. Two interfaces are provided, one based on the Spyder IDE which has an accessible user interface akin
to MATLAB and a second based on the Jupyter Notebook, which is a format that contains live code, equations,
visualizations, and narrative text. Tellurium uses libRoadRunner as the default SBML simulation engine which
supports deterministic simulations, stochastic simulations, and steady-state analyses. Tellurium also includes
Antimony, a human-readable model definition language which can be converted to and from SBML. Other
standard Python scientific libraries such as NumPy, SciPy, and matplotlib are included by default. Additionally,
we include several user-friendly plugins and advanced modules for a wide-variety of applications, ranging from
complex algorithms for bifurcation analysis to multidimensional parameter scanning. By combining multiple
libraries, plugins, and modules into a single package, Tellurium provides a unified but extensible solution for
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biological modeling and analysis for both novices and experts. Availability: tellurium.analogmachine.org.

1. Background

Python has proven to be a very popular language for scientific
computing and data science. The ease of learning and use, coupled with
the open-source nature of the language has made it an ideal platform
for scientific computations. The systems and synthetic biology com-
munity have shown support for Python through the development of a
variety of simulation tools. These include PySCeS (Olivier et al., 2005)
with a focus on simulation via differential equations, structural ana-
lysis, and metabolic control analysis; SloppyCell (Myers et al., 2007),
with a focus on model fitting and calculating the resulting uncertainties;
pySB (Lopez et al., 2013), with a focus on rule-based reaction models;
or COBRApy (Ebrahim et al., 2013), with a focus on constraint-based
modeling. However, as can be observed from this brief overview, most
tools are limited in their scope and focus on a specific set of function-
alities. Additionally, the installation process of systems biology soft-
ware can often be quite cumbersome, requiring users to follow multiple
and often fragile steps for proper configuration. This can be problematic
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for both novices and experts in the field.

Another critical issue in systems and synthetic biology is ensuring
exchangeability and reproducibility of models and simulation setups.
Over the past few years, the community has developed a variety of
standards to accurately capture models and simulation experiments.
These standards include the Systems Biology Markup Language (SBML)
(Hucka et al., 2001), which encodes the model, Simulation Experiment
Description Markup Language (SED-ML) (Waltemath et al., 2011),
which encodes the simulation setup, and the COMBINE archive
(Bergmann et al., 2014), which is the collection of files that represent
the full description of the model and associated simulation experiments.
For synthetic biology, the community has developed the Synthetic
Biology Open Language (SBOL) to describe synthetic designs (Beal
et al., 2016). Many of the existing tools support at least part of these
standards. For example, PySCeS supports SBML and a large portion of
SED-ML. SloppyCell also supports SBML, as does COBRApy. pySB offers
some support for reading and writing SBML models. However, none of
the Python tools described here supports the full set of standards
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discussed above.

Therefore, our goal in developing Tellurium was to design a general
platform with broader scope by combining a large variety of third-party
tools while supporting various standards to ensure reproducibility.
Furthermore, the installation process should be as simple as possible to
make our tool easily accessible.

The core philosophy behind Tellurium is to provide a high-perfor-
mance platform accessible to both novices and experts. We bring to-
gether a wide variety of libraries and tools for researchers in systems
and synthetic biology. Tellurium is distributed using one-click installers
so the installation process is extremely simple. Tellurium provides a
convenient one-stop solution for many of the needs of the community,
which is especially helpful for novices who do not wish to deal with the
complexities of manual configuration of the various tools we distribute.
For systems biology modeling, Tellurium supports various modeling
standards including SBML, SED-ML, the COMBINE archive, and SBOL.
In addition, we distribute libRoadRunner (Somogyi et al., 2015) for
simulation, AUTO2000 (Doedel, 1981) for bifurcation analysis, and
Antimony (Smith et al., 2009), phraSED-ML (Choi et al., 2016), as well
as SimpleSBML (Cannistra et al., 2015) for streamlined model creation
and modification. Along with the tools distributed with Tellurium, we
provide a simple method for users to install additional Python packages,
making Tellurium highly extensible.

2. Implementation

Tellurium is implemented in a mixture of C, C+ +, and Python. The
software can be roughly partitioned into three functional pillars: (i)
standards support; (ii) modeling; and (iii) general utilities (Fig. 1).

Support for standards in systems and synthetic biology is included in
Tellurium via the respective libraries such as libSBML (Bornstein et al.,
2008), libSEDML (Bergmann et al., 2017), libCOMBINE (Bergmann and
Keating, 2016), libSBOL, and basic support for CellML (Hedley et al.,
2001) via Antimony. Many of these libraries come from third-party
developers and some have been augmented for Tellurium to make them
easier to use. For example, SimpleSBML simplifies model building in-
stead of requiring users to use low-level methods in libSBML. Tellurium
provides extensive layers to libSBML and libCOMBINE to simplify the
process of generating COMBINE archives. We use COMBINE archives to
facilitate simulation reproducibility.

The second pillar includes the modeling and numerical support for
model design and analysis. Tellurium comes with packages such as
Antimony (Smith et al., 2009) and phraSED-ML (Choi et al., 2016)
which translate model and simulation setup in SBML and SED-ML
format to human-readable counterparts. The numerical support
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includes libRoadRunner which provides a variety of analyses including
ordinary differential equation simulation, Gillespie-based stochastic
simulation, metabolic control analysis, and structural analysis of net-
works via libStructural (Bedaso et al., 2018).

Another important function included in Tellurium is bifurcation
analysis, crucial for understanding models with multiple steady states.
This type of analysis can be difficult for a novice to perform, so a
wrapper to AUTO2000 is provided which interfaces itself to
libRoadRunner. By implementing it as a plugin for libRoadRunner,
AUTO2000 can directly access the simulation engine and perform
computations without the overhead of a cross-language API. This also
means that the bifurcation tool can be used outside of Python and
hosted by other tools. Note that unlike other AUTO2000 implementa-
tions, our implementation does not require an external compiler be-
cause this task is handled by libRoadRunner.

Finally, to demonstrate the flexibility in a Python ecosystem, we
also bundle COBRApy, which is one of the primary constraint-based
modeling packages. In addition, common Python packages that are
essential in scientific computing are bundled with Tellurium. These
include, but are not limited to, SciPy and NumPy (for a large variety of
numerical methods), SymPy (for symbolic manipulation), and plotting
libraries such as matplotlib and seaborn. Supplementary Table S1 lists
short descriptions of the packages discussed in this manuscript.

Tellurium is distributed with two interfaces: The first is Tellurium
Spyder, which is based on Spyder IDE and provides a MATLAB-like
environment for researchers who are already familiar with editor/
console type programming. Spyder IDE is a Python-based development
environment that comes with powerful tools like profiler and static
code analysis. Spyder IDE is ideal for modelers and developers who
prefer generating and debugging raw Python scripts. For those who
prefer notebook-like interfaces, we provide a Jupyter notebook-based
version called Tellurium Notebook. Jupyter notebook differs from
Spyder IDE as it creates documents containing live code, plots, narra-
tive texts, and equations. Moreover, Jupyter notebooks are interactive,
making it ideal for sharing and displaying the work with others. It is
also possible to install Tellurium and its dependencies in an existing
Python environment through pip. Examples of alternative hosts that
have employed Tellurium include PyCharm and Sublime Text.

3. Applications

In this section, we illustrate several use cases of Tellurium. In par-
ticular, we demonstrate various tools included in Tellurium as well as
its ability to integrate with other Python packages. We present ex-
amples of model building, simulation, and subsequent analysis tasks

Tellurium

' .

‘ Standards Support | Modeling Support ‘

SBML

e |

phraSED-ML
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Fig. 1. Overview of Tellurium. Tellurium is composed of three distinct functional pillars including standards support, modeling support, and utilities. Several third-
party Python packages come with Tellurium and additional packages can be installed if needed.
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import tellurium as te
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4.0
r = te.loada(""" 35 St
J1: $Xo -> S1; ki*Xo - k2*S1; D — 82
J2: S1 -> S2; k3*S1 - k4*S2; 30 — 83
J3: S2 -> S3; k5*S2 - k6*S3; . Y| —— S4
J4: S3 -> S4; K7*S3 - k8*S4; E5e s5
J5: S4 -> S5; k9*S4 - k10*S5; =
36: S5 -> ; K11*S5; S ‘4:::::::::::::::::::::::::::
© 20

Xo = 1.0; S1 = 0.3; S2 = 0.1; §15
S3=0.2; S4=0.1; S5 =0.2; s
ki = 3.92; k2 = 2.83; k3 = 0.8; 010
k4 = 0.24; k5 = 0.68; k6 = 0.35; !
k7 = 0.82; k8 = 0.47; k9 = 0.37; 05
k10 = 0.22; ki1 = 0.1; :
iy 00 Z
result = r.simulate(0, 30, 100) ~o 5 10 15 20 25 30
r.plot() Time (s)

J, J, Jy J, J Jg
Xo S1 S2 SS S/l SS

Fig. 2. A simple linear chain model with five floating species written in Antimony language and corresponding simulation result. The diagram below illustrates the
model. Species X, is a boundary species (fixed) and each reaction is modeled using reversible mass-action kinetics. J; is used to label each reaction.

such as metabolic control analysis, bifurcation analysis, and parameter
estimation. All scripts used in this section are available in the
Supplementary Materials.

3.1. Model building and simulation

First, we start with a simple example demonstrating model building
and simulation in Tellurium. Models in Tellurium can be defined using
Antimony, a human-readable model definition language which directly
translates to SBML. Antimony supports a large part of SBML specifica-
tion including events and assignment rules and can be easily translated
to and from SBML. Fig. 2 illustrates a model of a simple linear chain
involving five floating species and corresponding simulation result.

3.2. Metabolic control analysis

An important part of the modeling and model analysis process is
sensitivity analysis, which provides information about the effect of
system parameters and states on the results. A standard approach for
sensitivity analysis is metabolic control analysis (MCA). Tellurium
calculates the various elasticities and coefficients defined in MCA
(Kacser and Burns, 1973; Sauro, 2017) using libRoadRunner (Somogyi
et al., 2015). In addition, there is support for frequency dependent MCA
in the form of Bode plots (Ingalls, 2004). A number of utilities are
provided to make it easier to visualize results from MCA studies. In
particular, we provide utilities to help visualize flux control, con-
centration control, and elasticity profiles using heat maps. Fig. 3 shows
heatmaps of the distribution of flux and concentration control coeffi-
cients in a linear pathway of six reactions (Fig. 2).

3.3. Bifurcation analysis

Bifurcation analysis enables qualitative changes in model behavior
to be studied as a function of a model parameter. Such qualitative
changes include bistability and oscillatory behavior (Angeli et al., 2004;
Ermentrout and Terman, 2010). Tellurium's bifurcation facility is de-
signed to automatically compute a bifurcation in parameter space and
plot a bifurcation diagram without user intervention. The user specifies
a model parameter as the basis for the analysis. The bifurcation tool will
then automatically scan a user-specified range of parameter values. If at
some point the system changes to an alternate stationary state, the bi-
furcation is recorded and scanning continues. Fig. 4A illustrates a
number of bifurcation changes in a model of the embryonic stem cell
switch (Chickarmane et al., 2006) with Tellurium. For models where
the stoichiometry matrix does not have full rank, libRoadRunner
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creates the appropriately reduced model (Bergmann et al., 2006) thus
permitting bifurcation analysis of protein signaling networks to be
carried out (Sauro and Ingalls, 2004; Sauro, 2014).

3.4. COMBINE support

Tellurium supports importing and exporting COMBINE archives
through the Antimony and phraSED-ML languages. To demonstrate this
feature, we present a simple application using the same model and si-
mulation setup as in the code illustrated in Fig. 2. To generate a
COMBINE archive, a model and a simulation setup are defined in the
Antimony and phraSED-ML language. We then create an inline OMEX
by joining the two string blocks.

import tempfile, os
import tellurium as te
te.setDefaultPlottingEngine ('matplotlib’)

antimony_str = 77/
model myModel
Jl: $Xo -> S1; kl+Xo - k2#S1;
J2: 81 -> S2; k3x81 - k4*S2;
J3: 82 -> S3; k5+S2 - k6xS3;
J4: S3 -> S4; k7+S3 - k8#S4;
J5: S4 -> S5; k9+S4 - k10#S5;
J6: S5 —> ; k11+S5;
Xo = 1.0; S1 = 0.3; S2 = 0.1;
S3 =0.2;, S4 = 0.1; S5 = 0.2;
k1l = 3.92; k2 = 2.83; k3 = 0.8;
k4 = 0.24; k5 = 0.68; k6 = 0.35;
k7 = 0.82; k8 = 0.47; k9 = 0.37;
k10 = 0.22; k11 = 0.1;
end
phrasedml_str = 77/
modell = model "myModel"
siml = simulate uniform(0, 30, 100)
taskl = run siml on modell
plot "Figure 1" time vs S1, S2, S3, S4, S5

rrr

inline_omex = ’'\n’.join([antimony_str, phrasedml_str])

This setup can be directly executed in Python to check the output
using executeInlineOmex, which will be identical to the plot shown
in Fig. 2.
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Fig. 3. Two heatmaps showing the flux and concentration control coefficients for a linear reaction chain of six reactions and five floating species illustrated in Fig. 2.
E; is the enzyme level for reaction i, and J; is the flux through reaction i. S; is the substrate label. Red indicates positive values and blue indicates negative values. For
example, reaction step six, E, has a strong negative influence on species Ss. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of the article.)

te.executeInlineOmex (inline_omex) 3.5. Parameter estimation

Parameter estimation is a common step in developing a model
where the model is fitted to experimental data. Since Tellurium is based
on Python, users can use the various optimization packages available in

) ) ‘ Python. Moreover, Tellurium provides an environment where para-
wDir = tempfile.mkdtemp (suffix="_omex") . R . . . .
te.exportInlineOmex (inline_omex, os.path.join (whir, ’archive. meter estimation routines can be easily customized to deal with almost

omex’)) any fitting problem. To demonstrate Tellurium's abilities in parameter
estimation, we used a model of the central carbon metabolism of
Escherichia coli originally published by Chassagnole et al. (2002) and
later reformulated to be used as a part of benchmark suite for parameter
estimation by Villaverde et al. (2015). The model is composed of 18
species and 48 reactions with 116 parameters to fit. Experimental data
was supplied by the original authors, which consists of 110 time-course
data points spread over 9 different metabolites. The reason why we

While it is possible to import COMBINE archives through Python choose this p?rticular model is bec.ause (1) we have reference re.sults to
functions, both Tellurium Spyder and Tellurium Notebooks provide compare against, (2) the model is based OI? measured experllmen.tal
simple GUI-based plug-ins to open a COMBINE archive as well. Detailed data, and (3) the model presents a challenging parameter estimation

description on support for creating reproducible models in Tellurium problem w%lere.the rePorFed optimized . esults still df)es not fit well.
will be discussed in a separate publication due to its broad scope. Therefore, in this application, our goal will be to get a fit comparable to

A B

80 6

Export this setup to a COMBINE archive using

exportInlineOmex.

Now import and execute the COMBINE archive that was just ex-
ported to check that the output is the same as before.

te.executeCombineArchive (os.path.join(wDir, ’archive.omex’))
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Fig. 4. Plots depicting applications of Tellurium. (A) Bifurcation analysis applied to a model of an embryonic stem cell switch. The label LP represents a fold or
turning point bifurcation. Blue, green, red, and yellow indicate transcription factors OCT4, SOX2, NANOG, and OCT4-SOX2 heterodimer respectively. Blue (OCT4)
trace is covered by the green trace (SOX4). (B) Central carbon metabolism model of E. coli fitted against experimental data of 9 metabolites. Lines represent simulated
data using fitted parameters and dots represent the experimental data. Red, blue, green, purple, orange, yellow, brown, pink, and gray traces and dots corresponds to
pep, g6p, pyr, f6p, glcex, glp, pg, fdp, and gap, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.)
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that obtained by Villaverde et al. (2015).

The model presents a relatively large number of parameters to fit
and many standard local optimization methods fail. Instead, a global
optimizer is used to find a proper set of parameters. Here, we use the
differential evolution optimizer supplied by the SciPy package. Fig. 4B
shows the result of parameter estimation on Tellurium, which is similar
to the fit reported in the benchmark (Villaverde et al., 2015) and better
than that of the original paper (Chassagnole et al., 2002). To compare
the fit, we use cumulative normalized root-mean-squared error
(2 NRMSE), as was done by Villaverde et al. (2015). Root mean squared
error measures the average of differences between observed and pre-
dicted values (error), and is given by Eq. (1).

1 N
RMSE = | — . — )2
\/NZ;@ » )}

Here, N is the total number of the sample, y; is the observed value, and
¥ is the predicted value. This value has been normalized against the
observables by dividing by the difference between the maximum and
minimum values of observables as shown in Eq. (2).

RMSE

NRMSE = ———>—
max(y,) — min(y;)

(2)

Our parameter optimization run results in XNRMSE = 2.29 which is
similar to the value reported by Villaverde et al. (XNRMSE = 2.49)
(Villaverde et al., 2015) and better than the original parameterization
given by Chassagnole et al. (ENRMSE = 3.61) (Chassagnole et al.,
2002). A plot of the residuals is provided as Supplementary Figure S1.
Fitted parameters obtained from Tellurium are available in the Sup-
plementary Materials.

A single run of parameter estimation using differential evolution
took about 4.5h on a single core of Intel i7 4770 machine running at
3.4 GHz with 8GB RAM. Approximate standard errors on the fitted
parameters can be obtained from the Hessian. For more accurate esti-
mates it would be possible to use Monte Carlo or Profile Likelihood
methods (Schaber and Klipp, 2011). For the scope of this paper, we
omit this step, but in the future, we will be supporting massively par-
allelized workloads through commercial cloud services that a user
might be subscribed to.

4. Conclusion

With Tellurium, we provide the systems and synthetic biology
community with an extensible Python-based modeling environment.
We have endeavored to build a platform for collaboration by basing
Tellurium on extensible and open architectures such as Spyder IDE and
Jupyter Notebook. Our tools are available under Open Source Initiative
(OSD)-approved open source licenses. As a result, our users have the
freedom to apply further customizations to Tellurium. Pervasive sup-
port for systems biology standards enables models created by Tellurium
to be stored, reused, and modified reliably by other software tools.

Availability

Installers for Tellurium Spyder are available for Microsoft Windows
and Mac OS X. Jupyter Notebook versions of Tellurium (Tellurium
Notebook) are available for Windows, Mac OS X, Debian and RedHat
Linux distros. The Tellurium package is also available through PyPI.
Binaries, documentation, and full source code are available at http://
tellurium.analogmachine.org and https://github.com/sys-bio/
tellurium. Tellurium is licensed under the Apache License Version
2.0. Scripts used for applications section are available in the
Supplementary Materials.
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