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The need for extended liver resection is increasing due to the growing incidence of liver

tumors in aging societies. Individualized surgical planning is the key for identifying the

optimal resection strategy and to minimize the risk of postoperative liver failure and

tumor recurrence. Current computational tools provide virtual planning of liver resection

by taking into account the spatial relationship between the tumor and the hepatic vascular

trees, as well as the size of the future liver remnant. However, size and function of the

liver are not necessarily equivalent. Hence, determining the future liver volume might

misestimate the future liver function, especially in cases of hepatic comorbidities such as

hepatic steatosis. A systems medicine approach could be applied, including biological,

medical, and surgical aspects, by integrating all available anatomical and functional

information of the individual patient. Such an approach holds promise for better prediction

of postoperative liver function and hence improved risk assessment. This review provides

an overview of mathematical models related to the liver and its function and explores

their potential relevance for computational liver surgery. We first summarize key facts of

hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a

description of the computational tools currently used in liver surgical planning. Then we

present selected state-of-the-art computational liver models potentially useful to support

liver surgery. Finally, we discuss the main challenges that will need to be addressed when

developing advanced computational planning tools in the context of liver surgery.

Keywords: Liver resection, risk assessment, systems medicine, multi-scale modeling, function prediction, liver

regeneration, liver metabolism, liver surgical planning

FROM SYSTEMS BIOLOGY VIA SYSTEMS MEDICINE TO
SYSTEMS SURGERY OF THE LIVER

Systems biology is characterized by the application of computational models and methods to a
biological question, focusing on entire biological systems and the complex interactions therein. In
systems biology, an iterative cycle of model building and validation based on experimental data
generation and analysis is pursued. The key purpose of computational models is the integration of
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biological knowledge into a mathematical representation of
the underlying processes allowing in silico testing of new
hypotheses. Systems biology applied to human diseases is an
interdisciplinary approach broadening our understanding of
mechanisms involved in disease development and progression.
Thus, mathematical models of human diseases can enable us to
discover new therapy strategies and targets.

Using the systems biology approach in a clinical setting
is termed systems medicine (Wolkenhauer et al., 2013).
In systems medicine, computational models are applied for
disease diagnosis, prediction of disease progression, and
for guidance to select suitable therapeutic strategies. In
addition, computational models provide the opportunity for
individualization. Patients differ in their individual anatomy,
physiology, genetic background, and personal history, all of
which influence the severity and course of the disease and
determine the specific response of the patient. Therefore, in
medicine and especially in surgery, a modeling approach is
needed, which permits a patient-specific perspective on disease
development and progression, taking preexisting patient-specific
conditions into consideration.

Computational surgery refers to the use of computational
support in the context of surgery (Garbey et al., 2012; Bass
and Garbey, 2014). Computational models can guide surgery
to optimize intervention and improve outcome. Such models
are applied in surgery for (a) preoperative risk assessment
of a patient to guide surgical planning, (b) adjustments of
the procedure during a surgical intervention, e.g., by using
image-based technologies, and (c) prediction of the surgical
outcome accompanied by decision guiding for postoperative
therapy. Computational approaches have been developed to
guide surgeries for, e.g., heart failures (Kayvanpour et al., 2015;
Meoli et al., 2015), brain tumors (Rockne et al., 2010; Baldock
et al., 2013), and liver resections (Soler et al., 2014).

Surgical planning, especially for liver resection, benefits from
computational support. The preoperative planning needs to be
accurate and predictive, but also fast and easy to cope with
the growing number of patients. More individualized surgical
planning will be required to push the limits in liver surgery
toward operating more patients with more advanced malignant
tumors, higher age, and preexisting liver damage.With increasing
severity of disease, the risk of postoperative liver failure rises.
Here, computational support in the future will enable better
risk assessment and highly individualized surgical planning for
the patients requiring liver surgery, allowing to perform more
successful procedures in higher-risk patients with improved
outcome.

Current computational support in hepatic surgery focuses
on anatomical assessment. To do so, the patient’s individual
hepatic anatomy is taken into account to enable preoperative
surgical planning. This ensures an optimal compromise between
an oncologically radical resection and a remnant liver of
sufficient size, see Figure 1. A radical resection involves surgically
removing the tumor including a large safety margin andmitigates
the risk of recurrence at the cost of an increased risk of failure.
In contrast, a small safety margin maximizes the size of the liver
remnant and thus reduces the risk of failure, but involves a higher

risk of recurrence. Computational support of today utilizes
sophisticated preoperative imaging in combination with surgical
planning tools. This approach allows to assess the patient-specific
anatomical condition, but does not consider the functional state
of the liver. Neglecting the functional state, however, represents a
serious limitation, because the success of liver surgery strongly
depends on the functional quality of the remnant liver after
operation, i.e., the metabolic and proliferative capacity, as well
as on the adequate stress response to the surgical injury.

Future computational support must include such functional
aspects. Surgical planning could be optimized by prediction of
the hepatic stress response, postoperative recovery of metabolic
functions, and regeneration of the future remnant liver. Both
anatomical and functional assessments are needed to better
predict the impact of surgical interventions. Computational
support combining anatomical assessment with a risk assessment
of liver (dys-)function could provide many benefits for
patients undergoing liver surgery, including faster recovery, less
infections, and reducedmortality, altogether leading to improved
patient outcome.

Employing models from systems biology in the context
of surgery, thus aiming at considering all relevant biological
processes by the means of predictive computational models, is an
approach that could be termed as “Systems Surgery.” Numerous
computational models simulating selected hepatic functions have
been developed in the field of systems biology. Thesemodels were
primarily developed to improve the understanding of hepatic
physiology, but their integration into current surgical planning
tools is lacking so far. Extending these tools by integrating
computational models involving the hepatic stress response,
metabolic function, and liver regeneration would allow better
prediction of the surgical risk and the postoperative course and
outcome.

In this review, we provide an overview of mathematical
liver modeling and its prospective application to computational
liver surgery. Following a comprehensive summary of the
biological and medical background relevant for liver surgery,
we present an overview of state-of-the-art computational
approaches supporting current liver surgical planning. Next, we
provide an outline of selected liver-specific models from the field
of systems biology with a special focus on their relevance for liver
surgery. Finally, we identify the main challenges associated with
the application of computational models in liver surgery.

UNIQUE CHALLENGES OF LIVER
RESECTION

The liver is a highly complex organ. It is characterized by (a)
its multi-scale architecture, (b) its special perfusion system with
two parallel inflows (hepatic artery and portal vein) and one
outflow (hepatic vein), (c) its multitude of functions including
metabolic homeostasis, synthesis of essential compounds,
detoxification, and excretion of toxic substances, and (d) its
high regenerative capacity after injury. Despite the seemingly
regular microstructure of the liver, perfusion, functional, and
regenerative capacity are distributed heterogeneously in the
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FIGURE 1 | Risk assessment and decision making in hepatic resection. Planning for a safe resection of a liver tumor with a large future liver remnant (FLR) reduces the

risk for postoperative liver failure but increases the risk of recurrence. In contrast, planning for an oncologic radical surgery requires a safety margin. Extending the

safety margin (e.g., 10 vs. 1mm) in case of a centrally located tumor leads to a substantially extended resection leaving a rather small future liver remnant behind,

which increases the risk of postoperative liver failure. Preexisting liver disease such as steatosis increases the risk for postoperative liver failure and might therefore call

for a smaller safety margin compared to livers without preexisting diseases.

organ at different spatial scales, see Figure 2. Liver diseases
can impair the hepatic structure, microcirculation, metabolic
function, and the regenerative capacity, all potentially increasing
the risk of postoperative liver failure.

Anatomy and Physiology
Multi-scale Architecture and Hepatic Perfusion
The multi-scale structure of the liver consists of cells, lobules,
segments, and lobes (Boyer et al., 2011). Organization of the liver
in lobes and segments is based on portal supply via the two main
(right and left portal vein) and eight segmental branches of the
portal vein. In contrast, hepatic drainage is ensured via the three
main hepatic veins (right, median, and left hepatic vein).

Hepatocytes, the main cell type of the liver, are organized
in cords along the hepatic sinusoids, the capillary-like small
blood vessels in the liver. This alignment of hepatocytes supports
efficient functioning by (a) separating opposing pathways in
spatially separated zones, (b) preventing substrate competition
between different metabolic pathways, and (c) connecting
consecutive pathways.

Sinusoids draining into the same central vein form the
liver lobule, the functional unit of the liver on the tissue
level. Perfusion of the liver lobules, also called hepatic

microcirculation, is unique since the sinusoidal network receives
both oxygenated blood from the hepatic artery (∼20%) and
(partially) deoxygenated blood from the portal vein (∼80%).
Alterations in the sinusoidal morphology (Figures 2C,D) lead to
changes and heterogeneity in the microcirculation.

Liver lobules in the region supplied by the same segmental
branch of the portal vein form one of eight segments of the
liver, the so-called Couinaud segments (Couinaud, 1957), cf.
Figure 2A. In contrast, each of the three main branches of the
hepatic vein drains two adjacent segments (and each segment
has multiple draining hepatic veins). The interplay of vascular
anatomy and flow resistances at the microcirculatory (sinusoidal)
level leads to heterogeneous liver perfusion (Figure 2B). This
complex and highly individual anatomy makes surgical planning
difficult.

Metabolism
The liver is crucial for maintaining metabolic homeostasis.
This is achieved via synthesis, degradation, and storage of
metabolites (e.g., glucose, glycogen, fatty acids, or amino
acids) (Boyer et al., 2011). For instance, constant glucose
levels are maintained via gluconeogenesis and glycogenolysis to
continuously supply the brain and other tissues between meals
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FIGURE 2 | Spatial heterogeneity in liver physiology. Visualization of human individual hepatic vascular and parenchymal anatomy (A, the labels indicate the different

Couinaud segments) is the basis of current surgical planning (I). Planning currently does not take any functional heterogeneity into account. However, heterogeneity

exists on the macro- and microscale in terms of hepatic perfusion (B, clinical perfusion CT*) and microcirculation [C,D, orthogonal polarization spectroscopy image

from (C) normal rat liver and (D) rat liver after 90%PHx]. Heterogeneity also occurs in terms of regional distribution of functional activity (E, Mebrofenin scan of human

liver**) and of metabolic zonation in mouse liver (F, periportal expression of E-cadherin and perivenous expression of CYP2E1). Furthermore, inhomogeneous

distribution also occurs in case of morphologic changes due to global liver disease, here shown regional heterogeneity of fat distribution (G, MRT of steatotic mouse

liver) as well as zonated distribution of fat accumulation in periportal hepatocytes in a mouse liver (H). Current planning focuses on visualizing tumor location (I).

Monitoring of liver regeneration is mostly restricted to experimental or clinical studies and revealed inhomogeneous growth of the remnant lobes in mice (J–L). H,

human; M, mouse; R, rat. *Reprinted from Cieslak et al. (2016), with permission from Elsevier. **Reprinted from Wang et al. (2013), with permission from Elsevier.

(König et al., 2012). Other crucial tasks are the synthesis and
excretion of bile acids, the synthesis of plasma proteins (e.g.,
enzymes, coagulation factors, and complement proteins), and the
metabolization and detoxification of xenobiotic compounds (e.g.,

most drugs and toxins are cleared by the liver) (Boyer et al.,
2011).

The function of individual hepatocytes depends on their
position in the liver lobule, a phenomenon called metabolic
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zonation. Hepatocytes close to the portal field (periportal) receive
oxygen-rich blood from the hepatic artery and nutrient-rich
blood from the portal vein and are specialized in oxidative
metabolism comprising gluconeogenesis, β-oxidation of fatty
acids, and cholesterol synthesis. In contrast, hepatocytes close to
the central vein (pericentral) receive lower oxygen and nutrient
levels and perform glycolysis, lipogenesis, bile acid synthesis,
and drug detoxification by cytochrome P450 (CYP) enzymes
(Kietzmann, 2017). This zonation is mainly a consequence
of differential protein expression along the sinusoid, e.g., the
restricted periportal expression of E-cadherin and perivenous
expression of CYP2E1 depicted in Figure 2F.

Metabolic zonation is the reason for predominantly zonal
damage in response to specific challenges. For example,
systemic metabolic diseases like Type 2 Diabetes mainly
impact the regional specialization of periportal hepatocytes,
e.g., periportal hepatocytes expressing the key gluconeogenic
enzyme phosphoenolpyruvate carboxykinase (Yang et al.,
2009). Similarly, initiation and progression of fibrosis during
pathogenesis of liver cirrhosis affects primarily the periportal
areas, since deposition of extracellular matrix originates from
mesenchymal cells resident or recruited to the portal area
of the liver lobule (Bataller and Brenner, 2005). In contrast,
intoxication, e.g., with acetaminophen, mainly affects pericentral
hepatocytes, which express the cytochrome P450 enzymes
needed for metabolization of the drug (Woolbright and Jaeschke,
2017).

The metabolic functions of the liver are the result of a
complex interplay between metabolism on the cellular scale,
tissue structure, and perfusion of the tissue/organ. As a result
of multiple heterogeneous phenomena, functional hepatocellular
activity is distributed heterogeneously in the liver (Figure 2F).
Consequently, important questions before liver resection are:
How does a surgical intervention impact the metabolic functions
of the liver? i.e., what is the remaining functional capacity of
the liver for metabolic tasks after resection? Is this sufficient to
support volume regeneration and functional recovery?

Surgery and Recovery
Resection
The incidence of liver tumors is increasing with the age of the
patients. The demographic change with a constantly increasing
elderly population leads to a growing number of patients in need
of liver surgery (Liu et al., 2017).

Liver resection is the most common liver surgery and consists
of removal of liver tissue due to focal lesions, most often
malignant tumors (Abdeldayem, 2013). Malignant tumors, like
hepato- or cholangiocellular carcinoma, or liver metastases,
but also living liver donation, often require extended partial
liver resections of more than two thirds of the liver. The
extent of resection is determined by the size and location
of the focal lesion and the estimated function of the future
liver remnant. The function of the liver remnant depends on
several factors including its volume, the size of in- or outflow
compromised territories, the impairment of hepatic micro- and
macro-circulation induced by resection (Nilsson et al., 2014),

and the severity of any preexisting damage aggravating the
microcirculatory impairment (Hossain et al., 2006).

Reduction of hepatic liver mass results in portal hypertension
and portal hyperperfusion. After resection, all blood from
the intestine has to pass through the reduced vascular bed
resulting in an increased perfusion pressure and flow rate.
Portal hyperperfusion leads to decreased arterial perfusion due
to the hepatic arterial buffer response (Lautt et al., 1984). The
impaired microcirculation challenges the liver remnant with a
high metabolic and regenerative demand, thereby increasing the
risk of liver failure.

Transecting hepatic parenchyma requires transecting
branches of both the portal and the hepatic vein. Due to the
anatomical disparity of two portal veins supplying, but three
hepatic veins draining the liver, a certain focal in- or outflow
obstruction is inevitable. The impairment of hepatic perfusion
and microcirculation may cause hepatocyte dysfunction and
pericentral confluent necrosis, further reducing the functional
liver mass (Lee et al., 2001).

Prior to liver resection, surgeons have to assess the patient’s
individual risk for postoperative liver dysfunction. In case of
malignant tumors, surgeons have to identify the surgical strategy
best suited to allow radical oncological removal without putting
the patient at risk of postoperative liver failure due to excessive
removal of liver mass (Figure 1) (see also, van Dam et al., 2014;
Kang and Ahn, 2017). Depending on the size, etiology, and
location of the tumor, the surgeon has to define the best strategy
in terms of the resection surface, but also in terms of the surgical
technique such as the use of vascular occlusion tominimize blood
loss. Both together determine the total parenchymal loss and the
extent of damage to the remnant liver (Figure 2I). Deciding on
the resection surface determines the safety margin around the
tumor and the vessels which have to be transected. Therefore, a
key challenge in planning liver resection is to ensure adequate
vascular supply and venous drainage, both of which are essential
for normal liver function. Small changes in placing the resection
surface can have large effects on the size of the compromised
portal/arterial inflow and venous outflow territories. In addition
to the loss of liver mass by resection, compromised territories
further reduce the remaining functional liver tissue, increasing
the risk of the procedure.

Stress Response
Resection causes tissue damage and induces a stress response in
hepatic cells. An adequate stress response to the injury, consisting
ofmodulation of gene expression and various signaling pathways,
is imperative for the patient’s survival and recovery. Particularly,
the impairment of hepatic microcirculation after resection, which
is accompanied by an altered substrate delivery via blood to
the hepatocytes (Siu et al., 2014; Dold et al., 2015), makes an
adaptation of the metabolic activity necessary. Here, a sufficient
supply with oxygen for oxidative processes is required, but local
hypoxia caused by the impaired perfusion leads to an increased
production of reactive oxygen species (ROS) upon reperfusion
(Bhogal et al., 2010). Physiologically, ROS are signalingmolecules
involved in mediating an adequate stress response to tissue injury
by modulating metabolic adaptations and activating the innate
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immune system. Pathophysiologically, however, excess ROS may
cause cell damage. Particularly, if vascular exclusion is used
during liver resection tominimize blood loss (Garcea et al., 2006),
the level of ROS production raises, ultimately resulting in vast cell
damage, decreased metabolic function, and ischemia/reperfusion
injury (Zhang et al., 2007). This hampers the function of the
remnant liver, again contributing to the risk for postoperative
liver failure. Subsequently, the surgeon is faced with a critical
trade-off between the advantage of reduced blood loss and the
risk of ischemia/reperfusion injury (van Riel et al., 2016).

The hepatic stress response also triggers, besides metabolic
adaptations, an activation of the regenerative process
(Michalopoulos, 2017) and a local inflammatory response
(Alazawi et al., 2016). The latter is not only important for removal
of damaged and necrotic cells and triggering regeneration, but
also to prevent infections. After surgery, patients are faced with
increased risk for complications, such as focal infections, the
systemic inflammatory response syndrome, or sepsis (Alazawi
et al., 2016). This risk increases with postoperative hepatic
dysfunction, which is ultimately determined by the remnant
liver volume (Schindl et al., 2005). The levels of inflammatory
cytokines, such as IL-6, IL-8, and MCP-1 (monocyte chemotactic
protein-1) correlate with the degree of tissue damage and reflect
the early response to surgical injury (Badia et al., 1998; Strey
et al., 2011; Friedman et al., 2012).

Regeneration
The liver possesses a high regenerative capacity (Fausto
et al., 2012). This unique capability ensures restoration of
size and function after surgical, physical, or chemical injury
(Figures 2J,K,L). In principle, two different types of damage
require restoration of the liver mass: (a) cell death due to systemic
injury of the liver, predominantly occurring in a zonated manner,
and (b) tissue loss due to removal of liver segments or lobes via
resection.

Original liver mass after resection is restored by mature
hepatocytes in the residual liver undergoing oscillating cell
divisions (Miyaoka and Miyajima, 2013). The first wave of
division encompasses about 60% of the hepatocytes, followed by
waves of considerably less proliferation (Zou et al., 2012;Miyaoka
and Miyajima, 2013). The immediate regenerative response after
resection is mediated by HGF and IL-6, the so-called priming
factors of liver regeneration allowing hepatocytes to re-enter the
cell cycle (Fausto and Campbell, 2003). As part of the stress
response of liver cells to tissue injury, the process of liver growth
is highly controlled by a variety of signaling molecules involving,
among others, cytokines, growth factors (Böhm et al., 2010), and
hormones (Marino et al., 1992).

Substantial recovery of the liver mass occurs within 10 days,
and 80 to 90% of the original liver mass is reached within 6–
12 months following 70% resection (Nadalin et al., 2004; Kele
et al., 2012). In contrast, reports about the recovery of liver
function are highly variable, as this depends on the specific
aspect under investigation. For instance, liver biochemical
parameters [bilirubin, international normalized ratio (indicator
of blood coagulation)] return to normal within 10 days, whereas

cholinesterase, albumin, and galactose elimination capacity
recover within 90 days (Nadalin et al., 2004).

The liver accumulates lipids during regeneration
(Michalopoulos, 2007; Zou et al., 2012; Miyaoka and Miyajima,
2013). These lipids derive from an increased adipose tissue
lipolysis and provide energy substrates for the proliferation of
hepatocytes in the liver (Farrell, 2004; Fausto, 2004; Walldorf
et al., 2010). While this “physiological” post-resection steatosis
is beneficial, excess lipid accumulation in hepatocytes causes
hepatocyte death and impaired liver regeneration. This is of
special interest after extended liver resections, because a small
liver remnant has lower lipid storage capacity, and thus a higher
risk of lipid overload and organ dysfunction, than a larger
remnant. Since obviously the liver is unable to regulate the
amount of lipid uptake in relation to its size after resection,
extended resections lead to a pathophysiological shift from
utilization during regeneration to excess storage (Shteyer et al.,
2004; Hamano et al., 2014; Tautenhahn et al., 2016).

Ultimately, the course of liver regeneration depends on
the functional capacity of hepatocytes in the liver remnant.
The loss of liver tissue puts an additional stress on the
residual parenchyma to take over the metabolic tasks previously
accomplished by the whole liver prior to resection. This is critical
in situations where hepatocyte function is already impaired by
preexisting damage, like, e.g., hepatic steatosis as discussed below.

Preexisting Diseases
Preexisting global liver diseases can increase the risk of liver
surgery. Liver diseases affecting the whole organ comprise
metabolic, inflammatory and autoimmune, or infectious
diseases. Such diseases compromise architecture, function, and
regeneration of the liver and are often associated with or may
lead to steatosis, cholestasis, and fibrosis. In the following, we
focus on hepatic steatosis to delineate how one exemplary liver
disease may aggravate liver surgery.

Hepatic steatosis is defined as an excessive accumulation
of fat in the hepatocytes. Steatosis starts with development of
small droplets (microvesicular steatosis) progressing to large
droplet formation (macrovesicular steatosis). Depending on the
etiology, fat accumulation often starts in one specific zone, e.g.,
in the pericentral zone in case of ethanol-induced toxic etiology.
Besides zonal accentuation (Figure 2H), fat distribution can
also be subject to regional variations, resulting in substantial
heterogeneity in the regional fat content (Figure 2G; Capitan
et al., 2012; Idilman et al., 2016; Schwen et al., 2016).

Patients with steatosis have a higher surgical risk than patients
without steatosis (Kooby et al., 2003; Clavien et al., 2007;
McCormack et al., 2007). Several reasons contribute to the
risk: (a) Steatosis causes an alteration of hepatic architecture
leading to an inhomogeneous impairment of perfusion and to
an increase in portal pressure (Seifalian et al., 1998). Impaired
perfusion is at least partially caused by swollen fatty hepatocytes
and sinusoidal “capillarization” (Brock and Dorman, 2007) and
reduces oxygen and nutrient supply, contributing to the impaired
regenerative response (Yarbrough et al., 1991). (b) Steatosis
induces metabolic impairment, which aggravates post-resection
lipid overload. Preexisting steatosis is the result of the pathologic

Frontiers in Physiology | www.frontiersin.org 6 November 2017 | Volume 8 | Article 906

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christ et al. Systems Surgery

shift of lipid metabolism from utilization to storage due to
regulatory impairment. This impairment is not resolved after
PHx. Therefore, fat further accumulates instead of is being
utilized for regeneration. This extends lipotoxic exposure for
each single hepatocyte, thus augmenting cell death by, e.g., ROS
as described below. Hence, preexisting steatosis exacerbates the
reduction of the functional capacity of the liver after resection.
(c) Steatosis aggravates hepatic ischemia/reperfusion injury. The
increased metabolic supply and the impaired microcirculation in
the fatty liver “disrupt hepatic oxygen homeostasis,” ultimately
leading to local tissue hypoxia (Suzuki et al., 2014). This
preoperative condition makes fat-loaded hepatocytes particularly
vulnerable to ischemia/reperfusion due to an increased level of
oxidative stress. Thus, aberrant lipid accumulation in hepatocytes
sensitizes them against ischemia/reperfusion injury, which
occurs during the surgical procedure of partial liver resection and
transplantations (El-Badry et al., 2011; Kimura et al., 2016).

Taken together, flow restrictions due to excessive lipid
accumulation, hepatocyte impairment of lipid metabolism in
association with oxidative stress, and cell death impair liver
regeneration after resection in case of preexisting fatty liver
diseases. This is corroborated by clinical and experimental studies
indicating that preoperative metabolic interventions improve the
impaired regenerative response of the steatotic liver (Liu et al.,
2013). In mice fed with a high fat diet, which induced hepatic
steatosis, omega-3 polyunsaturated fatty acids given 1 h prior to
operation, ameliorated liver regeneration after both two thirds
and 86% partial liver resection by attenuating hepatic steatosis
and ischemia/reperfusion injury (Linecker et al., 2017).

In summary, preexisting liver diseases such as hepatic steatosis
increase the surgical risk for liver resection in multiple aspects.
Currently, this multi-dimensional risk is difficult to quantify
preoperatively for the individual patient. Therefore, tools are
needed to promote an integrated risk-assessment based on
different assessmentmodalities taking asmany aspects as possible
into consideration.

COMPUTATIONAL-AIDED SURGERY FOR
LIVER RESECTION

Current computational tools primarily support surgical planning
and intraoperative guidance based on images of the individual
patient anatomy, but do not include functional aspects (see
Figure 3). Surgical planning needs to address questions (Hansen
et al., 2014) related to (a) anatomic resectability, (b) safety margin
widths around lesions, and (c) resection strategy, but also to (d)
the functional capacity of the future remnant liver.

Medical Imaging Techniques for Liver
Surgery
A variety of imaging techniques is available for the detection
and differential diagnosis of liver pathologies, the assessment of
liver anatomy, and more lately also for the spatially resolved
evaluation of liver function. The armamentarium includes
ultrasonography, computed tomography (CT) and magnetic
resonance imaging (MRI) as well as nuclear medical imaging
modalities. The latter, for instance, play an important role in
detecting microvascular invasion of carcinoma preoperatively
using 18F fluorodeoxyglucose (FDG) PET-CT (Kobayashi et al.,
2016), but also allow to assess hepatic perfusion and excretory
function based on hepatobiliary sequence scintigraphy (Cieslak
et al., 2015, 2016) using different tracers, such as 99mTc
(technetium), 99mTc-galactosyl, or 99mTc-mebrofenin.

CT is a core technology for tumor staging and volumetric
evaluation of the liver. It enables precise visualization of the
tumor location with respect to the intrahepatic vascular anatomy.
In fact, the first computational planning tools considering the
individual hepatic anatomy were developed on the basis of CT
imaging (Radtke et al., 2007; Lehmann et al., 2008). Currently,
CT is the most common first-line imaging modality for staging
and monitoring of liver diseases (Pinato et al., 2017) as well
as postoperative risk prediction based on future remnant liver
volume (Vauthey et al., 2002; Truant et al., 2007). Advantages

FIGURE 3 | Preoperative surgical planning of today. Current surgical planning tools allow visualization of the individual liver volumes, hepatic vascular anatomy and the

corresponding portal venous and hepatic venous territories. Interactive tools allow to perform virtual liver resections and the (perfused) volume of the future liver

remnant can be calculated for the selected resection surface. The resection surface can be modified according to the width of the safety margin. The state of the art of

surgical planning for liver resection is based on the assumption that all liver volume is functionally equal without any heterogeneity. Such an approach does not take

functional aspects into account. The stack of CT images on the left was adapted from (Figure 1B in Chung et al., 2013), image license: CC-BY (https://

creativecommons.org/licenses/by/3.0/).
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of CT include low cost, high availability, and fast scan times.
With perfusion CT, functional assessment of the liver is made
possible by performing dynamic CT acquisitions following
intravenous administration of contrast agent to extract blood
supply characteristics into the tissue (Wang et al., 2013).

More recently, liver ultrasonography (US) and MRI have
gained ground with regard to their use in the detection,
characterization, and assessment of the response to treatment of
focal and diffuse liver diseases (van Beers et al., 2015).

Ultrasonography allows early diagnosis, treatment
management, and monitoring therapy outcome (Matos et al.,
2015). Recent developments in dynamic contrast-enhanced
US (Lencioni et al., 2007) and US-based elastography (Serai
et al., 2017; Wang et al., 2017) have facilitated dedicated and
specific liver pathology assessment. Contrast-enhanced US
promises great potential to evaluate tumor vascularization
in real time (Rübenthaler et al., 2017b) and has meanwhile
evolved to a minimally invasive imaging modality for evaluating
unclear liver lesions (Bartolotta et al., 2016; Rübenthaler et al.,
2017a). However, there are still several open issues concerning
standardization, operator dependency, 3D capabilities, and the
potential for quantitative perfusion. US-based elastography
allows predicting postoperative liver failure based on the
elasticity of the tissue (Shen et al., 2017).

MRI stands out for its superior soft tissue contrast and the
absence of ionizing radiation. MRI makes it possible to evaluate
different tissue properties, including fat content, restriction of
water diffusion, or increased T2-relaxation times, all of which
support lesion detection. Furthermore, in combination with a
liver-specific contrast agent such as gadoxetic acid (Gd-EOB-
DTPA), monitoring the perfusion dynamics and the uptake of
the agent allows functional assessment of the liver (Imbriaco
et al., 2017; Szklaruk et al., 2017; Zhou et al., 2017), thereby
improving the detection of liver carcinoma and classification
of microvascular invasion in hepatocellular carcinoma. Thus,
MRI is a versatile modality for creating detailed, anatomically
accurate models for computationally aided liver surgery (Oshiro
and Ohkohchi, 2017; Rutkowski et al., 2017). In addition,
it offers further potential in form of magnetic resonance
cholangiography or contrast enhanced magnetic resonance
angiography allowing comprehensive assessment of a patient’s
biliary and vascular status and possible complications (Boraschi
et al., 2008).

Localized magnetic resonance spectroscopy is a non-invasive
method to quantify the relative fat fractions of liver tissue,
thus providing an elegant means to assess preexisting steatosis
(Chiang et al., 2016; Di Martino et al., 2016; Krishan et al.,
2016; Kramer et al., 2017). It is often used as gold standard for
determining the proton density fat fraction with the potential
to replace liver biopsy and takes advantage of the so-called
chemical shift, which is based on magnetic field shielding by
the molecules’ electrons. The different chemical shifts between
hydrogen bound to water and lipids can also be utilized by fat-
water quantification imaging sequences (Hedderich et al., 2017;
Jhaveri et al., 2017), which offer more detailed insight into the
spatially inhomogeneous distribution of fat deposits in a steatotic
liver (Jang et al., 2017). This way, image-based MR methods

may overcome some of the limitations of magnetic resonance
spectroscopy associated with restricted spatial coverage and
subjective positioning of the volume of interest, which may
adversely affect accuracy.

As mentioned before, nuclear medicine also offers very
specific imaging methods to support liver surgery. Using the
radio-fluorinated carbohydrate (Mun, 2013) 2-[(18)F]fluoro-2-
deoxy-D-galactose and PET-CT detection to assess galactose
clearance, improved detection of hepatocellular carcinoma
has been demonstrated (Horsager et al., 2016). For patients
undergoing a major resection, risk assessment and prediction
of remnant and future liver function based on hepatobiliary
scintigraphy using 99mTc-mebrofenin has been shown to provide
better sensitivity, specificity, and positive/negative prediction
values compared to conventional remnant liver volume-based
risk assessments (de Graaf et al., 2010; Cieslak et al., 2016).
Though this method is currently used only in explorative studies
at a small number of sites, combining 99mTc scintigraphy with the
liver-specific functionalization agent mebrofenin appears fairly
promising for spatially resolved, accurate functional assessment
of the liver.

Taken together, a diversity of imaging modalities and methods
is currently available which, however, are not evenly spread
and readily available at all centers for daily routine yet. While
basic CT, US, and MRI are ubiquitously performed, particularly
the more recently developed methods in magnetic resonance
imaging and spectroscopy, contrast-enhanced US and nuclear
medicine, despite being very promising, are so far largely limited
to specialized centers.

Current Virtual Resection Tools
Presently, most computational models supporting liver resection
planning are based on individual patient anatomy (see Figure 3),
in particular the spatial relationship between tumor location and
hepatic vascular systems (e.g., Fishman et al., 1996; Marescaux
et al., 1998; Lang et al., 2005). Accurate visualization of this
spatial relationship is important for the surgical success of a liver
resection (Saito et al., 2005), and can be achieved by 3D imaging
and appropriate visualization techniques (e.g., Fishman et al.,
1996).

More advanced approaches support the planning of the
resection by virtual resection tools. HepaVision (now MeVis
LiverAnalyzer; Schenk et al., 1999) and LiverPlanner (Reitinger
et al., 2006) provide a patient-specific resection planning
proposal and highlight different safety margins sizes and affected
vascular structures as well as the remaining total and perfused
liver volume. Thus, the surgeon can adjust the desired safety
margin, which influences the resection proposal. Such planning
software is implemented in clinical routine for extended liver
resection planning.

Recent developments integrate additional biophysical
properties of the liver. Liversim (Oshiro et al., 2015) is a
novel virtual hepatectomy simulation software tool, which
additionally captures motion and deformation of the liver
caused by the intervention. A soft-tissue deformation model
including hyperelasticity, porosity, and viscosity of hepatic tissue
allows simulating realistic liver deformations and intrahepatic
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displacements in real time for surgery training (Marchesseau
et al., 2010) and planning. Modernmedical imaging coupled with
computational fluid dynamics (CFD) modeling also facilitates
predicting patient-specific alterations in hepatic hemodynamics
in response to partial hepatectomy (Rutkowski et al., 2017).

Volume-Based Risk Assessment in Clinical
Routine
Optimizing the surgical planning phase by computer-assisted risk
analysis can enhance surgery success. In case of hepatic cancer,
liver resections can be supported by a preoperative, computer-
based calculation of the remnant liver volume (Lang et al.,
2005). Hepatic volume estimation by a surgical planning software
tool revealed enhanced accuracy compared to the radiologist’s
volume estimations based on planimetry of a single CT/MR slice
(DuBray et al., 2011). The ratio of pre- and postoperative liver
tissue volumes, as a rough approximation of postoperative liver
function, has been included in virtual surgical planning systems
(e.g., Glombitza et al., 1999a,b; Simpson et al., 2014; Hallet et al.,
2015; Oshiro and Ohkohchi, 2017).

The aim of liver tumor resection is the complete removal
of the cancer. The surgical planning phase encompasses the
determination of an optimal safety margin width around the
tumor locations (Vandeweyer et al., 2009). Here, a trade-off
exists between adequate remnant liver function and sufficient
safety margin width. Some computer-based resection planning
tools that link visualization of liver structures with an additional
volume-margin function support precise operation planning
(Glombitza et al., 1999b; Preim et al., 2002; Hansen et al.,
2009), thereby enhancing the awareness of the surgical risk and
supporting the decision for a smaller resection volume compared
to surgical planning based only on conventional 2D/3D viewer
application (Hansen et al., 2014).

The Challenge of Function-Based Risk
Assessment
Current surgical planning tools focus on the estimation of liver
volume as a surrogate predictor of remnant liver function. The
underlying assumption is that all hepatocytes contribute equally
to liver function. This, however, neglects the spatial heterogeneity
of liver metabolism and perfusion, potential alterations of hepatic
function in the presence of a liver disease, or individual variations
inmetabolic function due to genetic variants, or as a consequence
of lifestyle.

Consequently, accurate assessment of the preoperative risk
requires improved evaluation of the individual functional
capacity and prediction of this capacity for the future liver
remnant. Such an improved assessment is essential for the
ultimate goal of prevention and early detection of postoperative
liver failure (Daylami et al., 2016). The measured changes in
metabolic function associated with liver surgery and disease
depends on the substance used in the function test. However, as
outlined above, the liver is a multifunctional organ, for which
a single functional assay only provides information about one
specific aspect of hepatic function.

Only few diagnostic tools are currently available formeasuring
metabolic function of the liver. Information about the metabolic
functional capacity can be obtained by means of dynamic
quantitative liver function tests, which measure the clearance of
selected substances specifically metabolized by the liver such as,
e.g., the clearance of caffeine (Fuhr et al., 1996), indocyanine
green (De Gasperi et al., 2016), or methacetin (LiMAx test, Jara
et al., 2015). The metabolic clearance of a selected compound
is hereby used to approximate global metabolic liver function
as a cumulative effect. Hence, it is necessary to understand
the underlying metabolism of the relevant substances and its
alteration due to disease and surgery.

This approach cannot provide information about spatial
heterogeneity such as, e.g., inhomogeneously distributed steatosis
throughout the organ resulting in areas with higher and
lower functional activity. Furthermore, such approaches cannot
discriminate between the influences of cellular metabolic
activity and altered perfusion or liver size after surgery.
Here, novel methods are needed to accurately reflect severity,
distribution, and composition of fat accumulation and, even
more importantly, the resulting spatially resolved functional
impairment.

A comprehensive function-based risk assessment requires
consideration of all relevant clinical information. Such an
assessment needs to integrate information about resection
volume/amount, preoperative metabolic impairment in case of
preexisting liver disease, intraoperative damage to the future liver
remnant as well as metabolic and regenerative capacity of the
future liver remnant. To achieve this, multi-scale computational
approaches are needed for integrating all relevant processes
into one comprehensive risk prediction. Currently, however,
only some of the required features are already available (see
section below on “Computational Modeling of Liver Diseases
Relevant for Surgeries”), but not within one comprehensive risk
assessment tool.

One first attempt to extend surgical planning beyond mere
visualization and volume estimation has been provided recently
by a model, which simulates postoperative liver regeneration in
a patient-specific manner (Yamamoto et al., 2016). This model
provides predictions of the duration of the postoperative recovery
period and possible complications.

COMPUTATIONAL LIVER MODELS
RELEVANT FOR LIVER SURGERIES

Regulation and maintenance of liver function involves complex
biological processes spanning multiple spatial and temporal
scales. Spatial scales range from the intracellular level up to the
level of the organism, whereas temporal scales have to reflect
time periods of seconds to years (e.g., metabolism in seconds
to days, regeneration over weeks, or disease progression over
months). Various biological processes play a role for hepatic
function in liver surgery, particularly important are the hepatic
stress response, metabolic adaptations, and regeneration.

Thus, multi-scale-oriented modeling approaches are
especially suited to provide amore comprehensive understanding
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of hepatic processes and mechanisms. Multi-scale-oriented
modeling consists of developing “simple” separate models
of certain sub-aspects or scales of the function of interest.
Subsequent model integration links input and output variables
of these separate models and leads to a more comprehensive
combined model, possibly spanning multiple scales. This so-
called hierarchical modeling approach (Cedersund and Strålfors,
2009; Nyman et al., 2011) allows adapting the model resolution
to the corresponding research question (Kirschner et al., 2014).
Current computational models can simulate a variety of selected
liver functions, see Tables 1–3 and reviews (Bogle et al., 2012;
Hetherington et al., 2012; Sumner et al., 2012; Fisher et al., 2014;
Petta et al., 2016).

The following sections present selected models/modeling
approaches for addressing liver functions, which might be
essential for future multi-scale models supporting liver resection:
(a) the hepatic stress response following physical damage, (b)
the metabolic pathways affected by surgery, as well as (c) the
regeneration of liver volume and function recovery.

TABLE 1 | Selection of existing computational models to address the stress

response with potential relevance for surgical planning, sorted according to spatial

scale (cell to organism).

Scale Modeling Approaches

Cell Intracellular signaling to adjust hepatic function to external conditions,

e.g.,

• Dietary composition—ODE (Woller et al., 2016)

• Reactive oxygen species production—ODE (Selivanov et al.,

2009, 2012; Gauthier et al., 2013; Smith and Shanley, 2013;

Markevich and Hoek, 2015)

• Hepatocyte growth factor network—ODE (D’Alessandro et al.,

2015b)

Local inflammatory reaction due to tissue damage (i.e., activation of

the immune response)

• IL-1 and IL-6 signaling network—Boolean network (Ryll et al.,

2011)

• Hepatic stellate cell activation (signaling)—PetriNet

(Kuttippurathu et al., 2014)

Lobule Inter- and intracellular interactions

• To trigger liver regeneration—ODE (Cook et al., 2015)

• Involved in signal propagation—ODE (Verma et al., 2016)

Establishment of zonation patterns

• Wnt/ß signaling—ODE (Kogan et al., 2012; Benary et al., 2013)

• Hedgehog signaling— fuzzy-logic-based (Schmidt-Heck et al.,

2015)

Organ Simulating patient’s immune response (immune cells, blood

concentrations of various signal molecules, blood pressure, tissue

damage)

• To pathogen infection—ODE (Clermont et al., 2004) (in silico

clinical trials to predict outcome of sepsis)

• To surgical trauma and hemorrhagic shock—ODE (Chow et al.,

2005; Lagoa et al., 2006)

Organism (none)

Multi-Scale

Integration

(none)

ODE, Ordinary differential equations.

Stress Response Induced by Physical
Damage
Resection induces a hepatic stress response, which involves
a modulation of signaling pathways and gene expressions.
Understanding the signaling network of the liver and how
the signaling affects metabolism, inflammatory processes, and
regeneration is important to assess the overall hepatic stress
response to resection. Signaling pathways are interconnected in
a non-linear fashion, involving complex interactions as well as
feedforward and feedback loops (D’Alessandro et al., 2015a). An
intuitive understanding of the signaling network is impossible
due to this intricate dynamic behavior. Here, mathematical
modeling can be used to disentangle the complex crosstalk
between signaling pathways. Based on this knowledge, further
mathematical models can be developed, which connect the
degree of surgical injury with liver function, inflammatory
response, and regenerative capacity. Such models enable
predictions of the hepatic response to surgical intervention and
possible postoperative complications in regard to an impaired
metabolism or regeneration based on the degree and/or location
of surgical damage. Here, understanding the relation between
remnant liver volume, hepatic metabolic function, and the local
immune response is important to optimize liver resections
planning (Schindl et al., 2005).

In the following, we provide a short overview of existing
computational models of hepatic signaling pathways to illustrate
the current state of knowledge. Then, we focus on ROS as
important signaling molecules (Dickinson and Chang, 2011;
Ray et al., 2012) and as a source of cellular damage impairing
hepatic metabolism and activating inflammatory processes after
surgical injury. Finally, we take a closer look at current models
considering the inflammatory response and the activation of the
innate immune system. A summary of selected models available
to address the hepatic stress response, which might be relevant
for surgical planning, is given in Table 1.

Models of Signaling Pathways
A variety of mathematical models of hepatic signaling processes
were developed, mostly using ordinary differential equations
(ODEs). Aspects covered by such models include, e.g., the origin
of zonation patterning (e.g., Wnt/β-catenin signaling pathway,
Kogan et al., 2012; Benary et al., 2013), the propagation of calcium
waves at the lobular scale involved in the regulation of diverse
hepatic functions (Verma et al., 2016), or the link between the
circadian clock and hepatic metabolism (Woller et al., 2016).
These models elucidate important features in the regulation and
signaling of hepatic function. One example is a fuzzy-logic based
model of the GLI-code, the set of three transcription factors
linking hedgehog signaling with regulation of metabolic zonation
as well as lipid and drug metabolism in hepatocytes (Schmidt-
Heck et al., 2015). This relation was also used to explain the link
between hedgehog signaling and steatosis (Matz-Soja et al., 2016).

Mathematical models of signaling pathways relevant for liver
surgery are necessary to predict, how the liver responds to
interventions. One promising approach is the hybrid modeling
strategy (D’Alessandro et al., 2015b), which links interaction
graph modeling of the signaling network with ODEs, thus
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TABLE 2 | Selection of existing computational models addressing metabolism with potential relevance for surgical planning, sorted according to spatial scale (cell to

organism).

Scale Modeling Approaches

Cell Metabolization of drugs

• Toxicity and timescale analysis, acetaminophen detoxification—ODE (Reddyhoff et al., 2015; Sluka et al., 2016)

Glucose metabolism

• Glucose homeostasis and hormonal regulation—ODE (König and Holzhütter, 2012; König et al., 2012)

Lipid metabolism—ODE

• Steatosis development (Schleicher et al., 2014)

• Insulin resistance & high intake diets (Ashworth W. et al., 2016)

• Beta-oxidation (van Eunen et al., 2013)

Genome scale metabolism—FBA

• Flux predictions under various conditions (Gille et al., 2010; Jerby et al., 2010; Agren et al., 2014; Naik et al., 2014)

• Gain and loss of enzymes (Pagliarini et al., 2016)

• Integration of transcriptomics & metabolic data (Hyötyläinen et al., 2016)

• Alterations of pathways in NAFLD (Mardinoglu et al., 2014)

Lobule Perfusion

• Resolved hepatic microvascular system—PDE (Rani et al., 2006)

• Anisotropic permeability—multiphase-PDE (Ricken et al., 2010, 2013)

• Role of vascular septa—PDE (Debbaut et al., 2014)

• Multilevel approach CFD—PDE (Peeters et al., 2015)

• CFD boundary conditions—PDE (Aramburu et al., 2016)

Perfusion + glucose metabolism

• Glycogen patterns & zonation—multiphase-PDE + ODE (Ricken et al., 2015)

• Zonated glucose metabolism—ODE (Chalhoub et al., 2007; Ashworth W. B. et al., 2016)

Perfusion + lipid metabolism

• Zonated lipid metabolism—ODE (Schleicher et al., 2014)

• Zonated damage & steatosis—ODE (Ashworth W. et al., 2016)

Perfusion + drug clearance

• Sinusoidal unit/representative sinusoid—PDE+ODE (Schwen et al., 2015)

Perfusion + ammonia detoxification

• CCl4 damage—AB+ODE (Schliess et al., 2014; Ghallab et al., 2016)

Organ Perfusion + Metabolization

• Well-stirred compartments for acetaminophen detoxification (Reddyhoff et al., 2015)—ODE

• Spatially resolved porous medium (Schwen et al., 2014)—PDE+ODE

Organism Pharmacokinetics

• Physiologically based whole-body PK, coupling GEMs to PK/PD—FBA+ODE (Bordbar et al., 2011; Krauss et al., 2012; Naik et al., 2014)

• Lumped compartment PK models, e.g. acetaminophen liver model in PK/PD—ODE (Geenen et al., 2013)

• With inter-individual differences (Krauss et al., 2013)—parameter adaption

Multi-Scale Integration • Cellular metabolic network model integrated in whole-body PBPK model (Krauss et al., 2012)—FBA+ODE

• Representative sinusoid: contains cells, contributes to organ, embedded in organism—PDE+ODE (Schwen et al., 2015)

• Glucose regulation (sinusoidal models & PK/PD)—ODE (Ashworth W. B. et al., 2016)

• Acetaminophen detoxification on multiple scales—ODE (Sluka et al., 2016)

AB, Agent-based; CFD, computational fluid dynamics; FBA, flux-balance analysis; NAFLD, non-alcoholic fatty liver disease; ODE, ordinary differential equations; PDE, partial differential

equations; PK/PD, pharmacokinetic/pharmacodynamic modeling.

permitting time-dependent simulations. In a first step, the
minimal model structure of a signaling network is identified by
interaction graphs. Then, subsequent analysis of ODE models
of this minimal model structure allows the identification of
the best model version. Such a modeling strategy helps to
disentangle the intracellular signaling network structure and to
predict the outcome of disturbances. The strategy was applied
to the hepatocyte growth factor-induced signaling network and
allows the prediction of the network response to interventions.
An accurate and precise prediction of the response of a

relevant signaling network to liver resection would allow better
assessment of, e.g., course of regeneration, and thus help to
optimize surgical procedures or even to decide for or against an
operation.

Models of Reactive Oxygen Species
Reactive oxygen species play a prominent role in the signaling
network being active after liver resection, and influence, for
example, the JNK pathway (Seki et al., 2012). During the first
hours after liver resection, an increased level of ROSwas observed
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TABLE 3 | Selection of existing computational models addressing regeneration

processes with potential relevance for surgical planning, sorted according to

spatial scale (cell to organism).

Scale Modeling Approaches

Cell Proliferation and its regulation

• Identification of molecular mechanisms (Zhou et al.,

2014)—correlation network

Lobule Growth and remodeling

• Continuum mechanical models of soft tissue—multiphase-

PDE (Ricken and Bluhm, 2009)

• Mixture theory—multiphase-PDE (Hum2002, BenGor2005,

AmbPetRicStyCia2016)

• Growth of biological tissues—multiphase-PDE (Ateshian and

Ricken, 2010)

• Onephasic—multiphase-PDE (Menzel and Kuhl, 2012)

• Biphasic—multiphase-PDE (Ricken et al., 2015)

• Triphasic—multiphase-PDE (Ricken et al., 2007; Ricken and

Bluhm, 2010; Waschinsky et al., 2016)

Regulation of regeneration

• After CCl4 intoxication—agent-based+ODE (Hoehme et al.,

2010)

• By perfusion or metabolic load in model sinusoid (1D

hepatocyte layer)—IPS + ODE (Hohmann et al., 2014)

Organ Tissue growth

• Continuum mechanics—PDE (Garikipati et al., 2004)

Volume recovery

• Liver size—ODE (Shestopaloff and Sbalzarini, 2014)

• Liver size taking into account extrahepatic parameters (such

as BMI)—ODE (Yamamoto et al., 2016)

Regulation of growth

• Molecular species and number/growth of liver cells—ODE

(Furchtgott et al., 2009; Periwal et al., 2014; Cook et al., 2015)

• Role of bone marrow cell migration in damaged tissue—ODE

(Pedone et al., 2017)

Organism (none)

Multi-Scale

Integration

• Cells in lobule—AB+ODE (Hoehme et al., 2010)

• Cells at sinusoid—IPS+ODE (Hohmann et al., 2014)

AB, Agent-based; IPS, interacting particle system; ODE, ordinary differential equations;

PDE, partial differential equations.

(Guerrieri et al., 1999; Lee et al., 1999). This high ROS level is
involved in the initiation of regenerative (Fausto, 2000; Tormos
et al., 2013) and inflammatory processes (Bhogal et al., 2010; Seki
et al., 2012) in response to the injury. Moreover, these oxygen-
based radicals are toxic and lead to oxidative stress, which can
result in vast cell damage and decreased metabolic function.

Therefore, computational models focusing on ROS linked to
relevant signaling pathways may be helpful in understanding
(and predicting) the hepatic surgical stress response. Based on
ODEs, several computational models have considered various
aspects of the production and degradation of ROS (e.g.,
Selivanov et al., 2009, 2012; Gauthier et al., 2013; Markevich
and Hoek, 2015). Furthermore, a mathematical model simulating
the complex regulation of insulin signaling by ROS yielded
insights into both protective and detrimental effects of ROS
(Smith and Shanley, 2013). The comprehensive overview by
Pereira et al. (2016) of the intracellular ROS crosstalk, including

the previous models, provides a systems-level examination of
the complexities of ROS as intracellular signal molecule and
toxic compound. However, mathematical models describing
ROS signaling pathways relevant for liver surgery are still
missing and no specific model of the processes leading to
ischemia/reperfusion injury in the liver exists.

Models of Inflammation and the Immune Response
The stress response of the liver involves also a local inflammatory
reaction. The signaling process starts with the release of so-called
damage-associated molecular patterns (Zhang et al., 2010) from
stressed hepatocytes. These signals activate the production of
pro-inflammatory cytokines in Kupffer cells, which initiate the
recruitment of leukocyte subsets to the injured site (van Golen
et al., 2012). Immediately after surgery, the concentration of
cytokines provides some hint of the degree of tissue damage
(Badia et al., 1998; Strey et al., 2011; Friedman et al., 2012).
Genome-wide gene expression measures were used to fit and
refine a literature-based Boolean model of interleukin 1 and
interleukin 6 signaling as a representation of hepatocellular
inflammation and proliferation (Ryll et al., 2011). Novel relations
between proliferation-associated processes were identified in
this study, which provided better understanding of the stress
response after surgery. In addition, the release of interleukin
6 and tumor necrosis factor alpha by activated Kupffer cells
triggered the cell cycle entry of hepatocytes and therefore initiates
liver regeneration (van Mierlo et al., 2016). An ODE model
to simulate the cytokine signaling and the increased metabolic
demand as triggers for regeneration has been established (Cook
et al., 2015). Depending on signaling patterns, the model showed
the existence of different modes of regeneration after resection
and emphasized the importance of Kupffer cell cytokine signaling
for the regenerative process.

Computational models can help to elucidate important
links between hepatic function and the immune response.
Postoperative hepatic dysfunction augments the probability to
acquire an infection (Schindl et al., 2005). Thus, quantifying
the relationship between liver volume, hepatic function, and
the immune response is of major importance to enhance the
safety of liver resections (Schindl et al., 2005). For example,
the Petri net approach was used to clarify the timing and
regulation of activation of hepatic stellate cells (Kuttippurathu
et al., 2014), an important cell type for the modulation of the
innate immune response. Relevant signaling pathways, such as
NF-κB and STAT3, were coupled to the regulation of microRNAs
and the model elucidated the driving regulatory factors in the
process of stellate cell activation. Another modeling framework
used a set of ODEs to simulate key inflammatory processes
(see Clermont et al., 2004; Chow et al., 2005 for model details)
initiated by surgical trauma and hemorrhagic shock to predict
global damage and dysfunction as an approximation to patient
survival (Lagoa et al., 2006).

Perspective: Stress Response Models in

Computational Liver Surgery
In conclusion, computational models coupling signaling and the
innate immune response already exist. Their usage has greatly
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improved the understanding of the immediate hepatic stress
response to physical damage. However, mathematical models
linking, for example, the postoperative metabolic impairment
with ROS-induced cellular damage are still missing. The cell
damage caused by an increased level of ROS after an operation
affects the function of the remnant liver and, therefore, is
relevant for the risk assessment of postoperative liver failure.
Future computer-based predictions of the remnant liver function
should take into account the preoperative metabolic capacity
of the liver as well as the possible postoperative impairment
caused by oxidative stress. Also, computationally supported
identification of patients at specific risks for developing sepsis
or acquiring a serious infection after the intervention is still
lacking.

The challenge for modelers in the field of hepatic signaling is
now to shift the focus to a surgical perspective. Computational
models are needed that incorporate the knowledge of signaling
networks and the hepatic stress response, thus linking the
degree of surgically caused tissue damage to impairments in
metabolism and to the activation of the inflammatory response.
This would enable a more precise computer-supported risk
assessment before resection. It is conceivable that such a tool
predicts the surgical outcome in response to the expected
surgical tissue damage and guides the decision of the surgeon
for or against a resection and for postoperative therapy
strategy.

Metabolism
Removal of functional liver tissue exceeding a critical cut-off
leads to a compromised metabolic liver function and ultimately
to liver failure. For accurate and quantitative evaluation of
the remnant functional capacity, the metabolic function of the
remaining volume must be determined. This function depends
on alterations of metabolism, perfusion, and morphology in the
acute phase after surgical intervention and during regeneration.
Computational models of hepatic metabolism can provide a
better understanding of the functional capacity of the healthy
liver (for an overview see also Cvitanović et al., 2017) and the
metabolic alterations occurring with disease, after liver resection,
and during regeneration.

In the following, we provide an overview on computational
models describing metabolic liver function with a special focus
on models incorporating multiple scales and coupling liver
morphology and perfusion to metabolism, followed by an
outlook on the application of such models to liver surgery. A
summary of selected models available to address the hepatic
metabolism, which might be relevant for surgical planning, is
given in Table 2.

Models on the Cellular Scale
A comprehensive view of the various metabolic capabilities of
the liver can be obtained via genome-scale metabolic models
(GEMs) to analyze the flow of metabolites through hepatic
metabolism based on steady state approaches. The most popular
approach is Flux Balance Analysis (Orth et al., 2010). Multiple
GEMs of the liver have been published (Gille et al., 2010;
Jerby et al., 2010; Agren et al., 2014; Naik et al., 2014)

and were applied to study central metabolic functions of
the liver like the NH+

4 detoxification (Gille et al., 2010), to
predict metabolic fluxes across different hormonal and dietary
conditions, or to simulate alterations as a consequence of gain
or loss of function of single liver enzymes (Pagliarini et al.,
2016). Such GEMs have proven useful as templates for the
integration of omics data to understand the genotype-phenotype
relationship in a mechanistic manner (Agren et al., 2014).
In recent years, GEMs have been applied to stratify HCC
patients (Björnson et al., 2015), to chart metabolic activity and
functionality in non-alcoholic fatty liver disease (NAFLD) by
integrating metabolic flux data and global transcriptomic data
from human liver biopsies (Hyötyläinen et al., 2016), or to reveal
alterations of metabolic pathways in NAFLD (Mardinoglu et al.,
2014).

To date, GEMs have not been applied in the context
of liver surgery, but coupling of omics data to analyse the
global metabolic changes following liver resection and during
regeneration could be an important next step.

An alternative approach is the use of kinetic pathway models
based on ODEs. This approach focusses on specific metabolic
functions by means of detailed mathematical description
of the involved cellular processes and molecular players.
Computational models of central liver functions have been
developed, e.g., for the hepatic glucose homeostasis (König
et al., 2012) providing insights into the switch of glucose
pathways and the role of hormonal regulation. Additional
examples are a minimal model of lipid metabolism in steatosis
development (Schleicher et al., 2014) and a computational model
of both hepatic glucose and lipid metabolism (Ashworth W. B.
et al., 2016; Ashworth W. et al., 2016) yielding insight in the
development of steatosis. Moreover, one possible mechanism
involved in hepatic lipid deficiencies was elucidated by a detailed
kinetic model of fatty acid beta-oxidation, in which an overload
of substrate slowed down lipid degradation (van Eunen et al.,
2013). Multiple pathways models for the detoxification of
individual drugs have been published, e.g., for acetaminophen
(Reddyhoff et al., 2015).

A more data-driven approach to metabolic function is to
apply genome-wide omics data for phenomenological modeling
of liver-related diseases. A large number of such studies exists,
most of them aiming to identify key molecules, biological
functions, and pathways relevant for the disease by differential
omics analysis or via correlation-based networks and subsequent
topological analysis. Omics-based models have been applied
in the context of liver-related surgery, such as, e.g., in the
analysis of pathobiochemical signatures of cholestatic liver
disease after bile duct ligation in mice (Abshagen et al., 2015).
Quantitative metabolomics was potentially useful to diagnose
early graft dysfunction in liver transplantation (Serkova et al.,
2007). Metabolomics data in orthotopic liver transplantation
by consecutive liver biopsies revealed hundreds of significant
metabolic differences between pre- and post-reperfusion grafts,
among others increased urea production and bile acid synthesis
(Hrydziuszko et al., 2010). Omics-based models will be an
essential tool in understanding the alterations in liver functional
capacity after resection and during regeneration.
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Models on the Sinusoidal and Lobular Scale
Kinetic pathway models, GEMs and omics approaches provide
important information about metabolic functions and their
alteration with disease. However, these approaches are limited,
because they neither include tissue architecture nor perfusion,
two important determinants of liver function especially in the
context of liver surgery. Hepatic metabolism involves multiple
spatial scales, ranging from metabolic pathways on the cellular
scale via lobular zonation of metabolic properties and gradients
of relevant compounds to metabolic heterogeneity on the
organ level. Various multi-scale modeling approaches have been
proposed (Diaz Ochoa et al., 2012; Kuepfer et al., 2012; Sluka
et al., 2016) to represent the metabolism of the entire liver and
especially the spatial heterogeneity of metabolic function on the
lobule and organ scales.

One common approach of coupling metabolism to perfusion
is treating the 1D porto-central axis of the sinusoid, consisting of
a sinusoid surrounded by hepatocytes, as the repeating unit of the
liver. SuchODE-based computationalmodels were used tomodel
the zonated damage and steatosis in NAFLD (AshworthW. et al.,
2016) or to analyze glucose homeostasis (Chalhoub et al., 2007;
Ashworth W. B. et al., 2016), lipid metabolism (Schleicher et al.,
2014, 2017), hepatic glucose and lipid metabolism (Chalhoub
et al., 2007), the detoxification of xenobiotics like acetaminophen
(Sluka et al., 2016), or effects of zonated damage on drug
metabolism (Schwen et al., 2015, 2016). These sinusoidal unit
models can be used as building blocks of whole-liver and whole-
body models (for details, cf. Schwen et al., 2015; Sluka et al.,
2016).

On the lobule-scale, metabolic pathway models have been
integrated with agent-based models of perfusion and ammonia
metabolism (Toepfer et al., 2007; Bartl et al., 2010, 2015; Schliess
et al., 2014; Ghallab et al., 2016), contributing to a better
understanding of how liver function depends on liver structure.
In the agent-based approach, individual hepatocytes act as agents
with intrinsic metabolism and behavior (like movement and
proliferation). Such mathematical models have been applied to
investigate the effect of liver damage on metabolic function after
CCl4-induced necrosis (Schliess et al., 2014; Ghallab et al., 2016).

Alternatively, the liver lobule is modeled using homogenized
continuum mechanical multiphase approaches, e.g., via the
theory of porous media (Ehlers, 2002; Ricken et al., 2010,
2013, 2015; De Boer, 2012). Embedding a coupled system of
ODEs in a porous medium model results in a spatio-temporal
description of perfusion andmetabolism. This approachwas used
to evaluate an anisotropic relation for the permeability of the
liver lobule, the effect of outflow obstruction on liver remodeling
and hepatic perfusion (Ricken et al., 2014), or the importance
of vascular septa for homogeneous perfusion (Debbaut et al.,
2014). Cellular glucose metabolism was coupled to the blood
flow through a porous medium leading to an ODE/PDE (partial
differential equations) model that helped to better understand
glucose homeostasis on the lobule scale (Ricken et al., 2015).

An alternative approach for modeling perfusion is to apply
Computational Fluid Dynamics (CFD) using detailed perfusion
models in vessel geometries. CFD was applied to the liver to
study blood flow in a segment of a lobule consisting of a resolved

hepatic microvascular system (Rani et al., 2006). CFD was also
used to simulate hemodynamic changes of the macro-circulation
in the cirrhotic liver, a multi-scale computational model to
simulate perfusion in the human liver on the organ and lobule
scale (Peeters et al., 2015), and in liver cancer arterial perfusion
models (Aramburu et al., 2016). A 3D multi-scale model of
biliary fluid dynamics in the mouse liver lobule predicted drug-
induced alterations of bile flow, and demonstrated that bile flow
is driven by the osmotic effects of bile secretion and bile canaliculi
contractility (Meyer et al., 2017). Until now the integration of
metabolic models with CFD and porous medium models is very
limited, and application in the context of liver surgery is missing.

Models on the Whole-Liver and Whole-Body Scale
Sinusoid and lobule-scale models allow to represent the entire
liver by applying appropriate scaling in a simplified way. Such
models are based on the assumption that the organ does not
contribute additional heterogeneity (e.g., in Sluka et al., 2016),
or use multiple instances of such models “in parallel” to capture
organ-scale heterogeneity (e.g., in Schwen et al., 2015). The organ
scale has also been addressed directly via an ODE/PDE model
of perfusion in the liver vessel tree and drug metabolization
(Schwen et al., 2014). Tissue and whole-liver models allow to
incorporate metabolic changes due to damage and resection by
suitable adaptation of model parameters. With such approaches,
effects of necrosis can be simulated on the lobule scale (Schliess
et al., 2014) or changes in drug clearance can be predicted in
steatotic livers (Schwen et al., 2014).

The liver in the context of the whole body is typically
modeled using pharmacokinetic/pharmacodynamic (PK/PD)
models (Jones and Rowland-Yeo, 2013) with a model spectrum
ranging from detailed physiologically based models (Willmann
et al., 2012) to strongly lumped models (Pilari and Huisinga,
2010). Many simplified models of various drugs being detoxified
by the liver exist, often modeled via simple one-step reactions
or a few reactions in the context of such PK/PD models
(e.g., glutathione and acetaminophen metabolism; Geenen et al.,
2013). For the liver, GEMs have been integrated into PK/PD
models (Bordbar et al., 2011; Krauss et al., 2012; Naik et al.,
2014) predicting, e.g., paracetamol clearance (Krauss et al., 2012).
Examples of the coupling of sinusoidal metabolic models to
PK/PD models are the analysis of glucose regulation (Ashworth
W. B. et al., 2016) or acetaminophen detoxification (Sluka et al.,
2016).

Perspective: Metabolic Models in Computational

Liver Surgery
Computational models of metabolic functions of the liver have
been developed, many of them based on multi-scale approaches
and integration of perfusion and tissue architecture. However, the
application of such models to liver surgery, especially on how the
metabolic function is changing after resection and subsequent
regeneration, is still in its infancy. By coupling metabolic
models to models capable of describing the effects of perfusion
and morphology on liver function, a holistic understanding of
changes after liver surgery on a local (tissue) and global (organ)
scale could be achieved.
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Surgical planning usingmodel-based predictions of functional
liver volumes could substantially improve clinical outcome.
Importantly, computational models of hepatic metabolism could
provide insights into the heterogenous distribution of metabolic
liver functions like the heterogeneity of fat in NAFLD and its
consequences for the regional functional capacity. Multi-scale
metabolic models of NAFLD/steatosis would allow to calculate
hepatic functional capacity based on given fat content, tissue
properties like stiffness and elasticity, and perfusion. Thereby,
they would provide important insights into surgical planning.
Multi-scale computational models of metabolic functions may
also improve evaluation of quantitative liver function tests, like
galactose elimination capacity or LiMAx. Integrated with surgical
planning tools, computational models of such liver function tests
could provide a more accurate prediction of metabolic function
after resection and during regeneration.

Integrating omics data with metabolic models for predicting
changes after liver surgery seems a promising future direction.
Personalizing generic models based on individual omics data,
a personalized prediction of metabolic liver function and its
alteration after resection could be achieved. This personalization
as well as the stratification of patients into subgroups has already
been demonstrated (Björnson et al., 2015; Hyötyläinen et al.,
2016). The use of omics data, however, is not yet part of clinical
routine, but could be important for the prediction of the remnant
liver function and thereby surgical planning in the future. For
individual function predictions, computational models could
be parametrized with a subset of omics data relevant for the
respective model.

Regeneration
The liver is capable of regenerating both volume and function
after physical damage induced by medical interventions. This
includes damage at the lobule scale induced by intoxication with
CCl4 (Weber et al., 2003) or damage at the organ scale due
to surgical interventions (Riehle et al., 2011), as well as spatial
and functional graft adaptation after transplantation (Taki-Eldin
et al., 2012). Once the liver is damaged, loss of hepatic mass
leads to an increase in portal blood flow per unit mass followed
by metabolic overload in the remaining tissue and an increase
in diverse signaling molecules including IL-6, TNFα, HGF, and
EGF (Michalopoulos, 2010). These signaling molecules, as well
as Hedgehog signaling (Matz-Soja, 2017), jointly orchestrate
the tightly controlled process of hepatocellular proliferation.
This process is composed of three phases: priming (initiation),
proliferation, and termination (Fausto, 2000). Mathematical
modeling of the involved biological processes in the different
phases of regeneration has the potential to aid in understanding
the underlying molecular mechanisms.

In this section, we review existing phenomenological models
of biological tissue growth, followed by mechanistic models,
which include relations and interactions between the involved
biological processes specifically during liver regeneration. A
summary of selected models available to address regenerative
processes in the liver, which might be relevant for surgical
planning, is given in Table 3.

Phenomenological Models of Liver Volume

Regeneration
Different types of models have been developed to simulate
biological growth (see, e.g., the reviews Ambrosi et al., 2011;
Jones and Chapman, 2012) and its regulation (Chara et al.,
2014), in particular continuum mechanics models of growth
(Skalak et al., 1982; Lubarda and Hoger, 2002), for soft tissues
(Rodriguez et al., 1994; Garikipati et al., 2004; Himpel et al.,
2005), or tumors (Greenspan, 1976). Such models are able to
calculate the mechanically induced volumetric growth of tissue
without explicitly resolving the underlying biological structures
and mechanisms.

A model for volumetric growth of organs including
quantitative characteristics and geometric shape of the liver
(Shestopaloff and Sbalzarini, 2014) was used to quantitatively
estimate patient-specific optimal size and shape of liver
transplants. Volume recovery computed from 3D image data,
such as shown in Haga et al. (2008), is a typical way of quantifying
regeneration and can be used to either calibrate or validate the
models and their predictions.

A model predicting postoperative liver volume regeneration
from individual quantitative clinical data was recently developed
(Yamamoto et al., 2016). This phenomenological model
predicted, whether liver size would recover or remain irreversibly
reduced, based on preoperative physiological and functional
parameters as well as parameters of the surgical procedure.

Mechanistic Models of Liver Volume Regeneration

Temporal Models
Several studies aimed to mathematically model liver regeneration
based on known interactions between regeneration-associated
biological processes and representative molecules. These models
are based on ODEs or delayed differential equations, and thus
focus on the temporal scale of the process of regeneration
without resolving spatial processes, in particular assuming spatial
homogeneity. A model reflecting the interplay of cytokines
and growth factors involved in initiating and terminating
liver regeneration (Furchtgott et al., 2009) was used to derive
different hypotheses for the improvement of liver regeneration.
This model was later transferred to modeling of human liver
regeneration in living liver transplant donors (Periwal et al.,
2014). Further extensions of the model by Furchtgott et al.
(2009) was used to emphasize the role of bone marrow cell
migration into the liver after resection in mice (Pedone et al.,
2017), and to integrate cell growth and its regulation, also in
case of model diseases (Cook et al., 2015). The aforementioned
models assume that the metabolic overload induces regeneration.
However, studies also hypothesize that the increased portal flow
per mass unit initiates the process of liver regeneration. The two
hypotheses were assessed by comparison of twomodels reflecting
liver regeneration as a consequence of hemodynamic changes or
the metabolic overload (Hohmann et al., 2014).

Spatio-Temporal Models
A number of studies also focused on including spatial properties
of liver regeneration. Already half a century ago, an ODE-based
model for cells at the sinusoidal scale was presented (Sendov

Frontiers in Physiology | www.frontiersin.org 15 November 2017 | Volume 8 | Article 906

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christ et al. Systems Surgery

and Tsanev, 1968), involving proteins, ribosomes, DNA, and
mechanisms predicting cellular death and division. Such models
could be used to identify hepatocyte-specific triggers when
applying general cell cycle models (see e.g., Kriete et al., 2014).
A mechanistic model at the cellular and lobular scale for liver
regeneration after CCl4-induced damage at the lobule scale in
mice was used to show that not only hepatocyte proliferation but
also coordinated cell orientation as well as cell polarity are critical
aspects ensuring restoration of the lobular micro-architecture
(Höhme et al., 2007; Hoehme et al., 2010).

One common approach for spatio-temporal continuum
models of regeneration is using mixture theory (multiphasic
approaches) embedded into a biomechanical framework. This
allows the integration of underlying biological mechanisms,
see among others (Humphrey, 2003; Amar and Goriely, 2005;
Ambrosi et al., 2017). The field of growth and remodeling
in biomechanics is covered by one-phasic (Menzel and Kuhl,
2012) as well as bi-phasic (Ricken and Bluhm, 2009) approaches.
Remodeling processes are presented in Ricken et al. (2010), where
a mechanical biphasic model was developed and the effect of
outflow obstruction on liver remodeling and hepatic perfusion
was studied. Dealing with coupled solid-fluid interaction, a
mixture framework using the finite element method was
presented (Ricken et al., 2015). This approach allows calculating
tissue growth depending on nutrient supply, e.g., diet high of free
fatty acids (Waschinsky et al., 2016).

Network Models
Furthermore, omics-based network models are commonly used
for the initial identification of genes and proteins involved
in liver regeneration and are thus used to identify key-
molecules to be considered in mechanistic models. However,
few studies have employed mathematical modeling based
on genome-wide transcriptomics data for the identification
of liver regeneration-associated molecular mechanisms and
biological pathways. A correlation-based model was inferred
from genome-wide transcriptomics data for the identification
of molecular mechanisms underlying regeneration induced
by partial hepatectomy (Zhou et al., 2014). This identified
de-regulation of several genes associated with hepatocyte
proliferation, inflammation, and DNA replication processes.

Models of Liver Function Recovery
Only few models of recovery of liver function have been
reported, most of them being phenomenological. Liver function
(in particular the lack thereof) has mostly been addressed in
terms of postoperative liver failure. Well-known risk factors
for postoperative liver failure are, e.g., preexisting disease, age,
nutrition (Hammond et al., 2011). The risk of liver failure can
be predicted partly by preoperative tests and risk-defined score
models (Clavien et al., 2007) and additionally by postoperative
parameters (Yamanaka et al., 1984).

A mechanistic model (Schliess et al., 2014; Ghallab et al.,
2016) of function recovery on the tissue scale deals with the
recovery of ammonia detoxification and amino acid metabolism
during regeneration after CCl4-induced pericentral necrosis.
This model included two selected aspects of liver function and

regeneration from damage pattern clearly different from those
encountered in surgery, but could be used as a starting point for
bridging the cellular and organ scale in regeneration modeling in
computational liver surgery.

Perspective: Regeneration Models in Computational

Liver Surgery
To our knowledge, currently no mechanistic mathematical
model addresses liver regeneration after hepatic surgery. Future
models supporting the prediction of regeneration could be
integrated in surgical risk assessment and help preventing
postoperative complications. The existing predictions of liver
failure could be extended to predicting the recovery of liver
function based on more advanced and more mechanistic
models. The tissue-scale function recovery model (Schliess
et al., 2014; Ghallab et al., 2016) could form the basis for
a model describing changes in lobular architecture and its
impact on more generic function recovery after resection. The
main challenge for modeling recovery of liver function is to
link tissue regeneration to metabolism, as already described
in the previous subsection. Moreover, correlation of volume
and function recovery for different diseases (Yamanaka et al.,
1993) could be used for phenomenological models of functional
recovery.

VISION: SYSTEMS SURGERY OF THE
LIVER

Future integrated models of liver metabolism and regeneration
should provide function-based risk assessment. Such models
need to be accessible via a usable tool for surgery planning.
To achieve a more accurate and comprehensive prediction of
the functional capacity for Systems Surgery, several medical and
computational challenges have to be resolved (Belghiti, 2016).

These challenges involve (a) precise determination of the
preoperative state and functional capacity of the liver, taking
preexisting disease into account (model input data), (b)
estimation of the extent of surgical damage inflicted on the liver
during the resection, and (c) prediction of the impact of hepatic
tissue loss and surgical damage on the functional capacity of the
(diseased) future liver remnant and its recovery process (model
output data).

Integrated Planning Tool for Liver
Resection
Future surgical planning software should include a workflow
for function-based risk assessment. Input data data comprise
in addition to the liver anatomical architecture also spatially
resolved data assessing hepatic perfusion and function as well
as clinical data, e.g., quantitative dynamical liver function tests,
and information about existing liver disease as summarized
graphically in Figure 4. Multi-scale computational models of
the liver based on animal models and clinical data will enable
to predict in silico function and regeneration after resection in
respect to variation of resection surface and safety margins.
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FIGURE 4 | Vision of future liver surgical planning tools. Surgical planning tools of the future will improve risk prediction by accounting for the functional heterogeneity

of the healthy and diseased liver and by providing predictions of the functional capacity of the future remnant liver. Multi-scale computational models of the liver will

provide the required in silico prediction of function and regeneration (blue box). Key information for surgical planning are time-resolved functional recovery curves, e.g.,

how clearance of certain substances is affected and recovers after resection. Suitable computational models have to be integrated and validated based on animal

models and clinical data (for an overview over computational models of the liver applicable in the context of surgical planning see Tables 1–3). The input data for such

function-based risk assessment includes in addition to the assessment of liver geometry, also the spatially resolved assessment of hepatic perfusion and hepatic

function as well as clinical data, e.g., quantitative dynamical liver function tests, and information about existing liver disease. Additional output of the future surgical

planning tool includes prediction of selected functions after resection, (e.g., hepatic perfusion, metabolic parameters) and their recovery in respect to variation of

resection surface and safety margins. CT image stack adapted from (Figure 1B in Chung et al., 2013), image license: CC-BY (https://creativecommons.org/licenses/

by/3.0/).

Functional predictive models need to be integrated into the
existing individual 3D planning of the liver representing the
vascular structure of the liver and the location of the tumor.

Such an integrated planning tool will improve individualized
risk prediction for hepatic surgery and provide important
information about the expected liver function after surgical
intervention and during subsequent liver regeneration. This tool
will ultimately support surgeons in their decision about a patient’s
operability and the choice of a suitable intervention, but will
also make them aware of possible postoperative complications
allowing therapy adjustments after resection.

The integrated tool will support risk assessment depending
on preexisting liver disease and damage of the liver. This
requires integrating underlying pathophysiologic conditions and
preexisting risk states on an individual basis. For example,
steatosis and other chronic liver diseases (such as cirrhosis
already impairing liver function) substantially impact the
function of the future liver remnant and its regeneration, and
hence increase the risk of postoperative complications and
liver failure. Surgeons and patients will benefit from more
comprehensive risk predictions taking functional aspects into

account without the need of own expertise in multi-scale
computational modeling in the implementation.

Future Developments
Further development of such an integrated liver model can be
envisioned to obtain better disease- or cohort-specific predictions
and to enhance the prognostic power for the individual patient.

Reaching better disease- or cohort -specific predictions would
call for including further cohort-specific data to tune the
integrated model according to the specific aspect in question.
Doing so will contribute to getting a better insight into disease
progression and curation. However, this will require to generate
considerably more animal experimental data of the specific
disease and of course to collect a substantial amount of additional
cohort-specific clinical data.

Such data are needed to generate probabilistic disease models,
which have to be integrated into the proposed “liver resection and
regeneration” model.

Enhancing the prognostic power for the individual patient
could be achieved by extending the knowledge-based selection
of relevant patient-specific pre-, peri-, and postoperative data
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considered to be relevant. Additional input data regarding the
activity and severity of the complicating liver disease as well as
data regarding the general patient condition (e.g., cardiovascular
condition) appears extremely useful for this purpose. Similarly,
additional outcome data would be necessary, requiring an
detailed follow-up of the patient to collect data regarding
extra-hepatic surgical and general complications [e.g., abscess
formation, postoperative infections and grade their severity
(Clavien-Dindo classification)] and reflecting the recovery of the
patient’s general condition (e.g., days in ICU and in hospital).
However, increasing the number of entry variables would call for
a higher number of outcome observations.

Alternatively, this could also be achieved using a “big data”
approach by focussing on creating an interface with the currently
used hospital information systems to have access to all patients
and all patient-specific information. Following this approach, a
rather large number of patients would be needed to reflect the
high data variability as presented in true patient cohorts.

Medical Challenges
Determining the preoperative state of the liver and the expected
alterations after surgery must be improved to optimize surgical
planning and reduce the probability of postoperative liver failure.
This involves several challenges.

Improving Preoperative Diagnostics
Here, the key point is to improve spatial resolution, which
will benefit the assessment of morphological and structural
alterations due to the underlying preexisting hepatic disease,
the assessment of hepatic perfusion, and most importantly, the
quantitative assessment of hepatic function.

Identifying Prognostically Relevant Aspects of

Hepatic Function and their Spatially Resolved

Assessment
Identifying meaningful and relevant diagnostic assays from the
multitude of available assays is a major challenge. These assays
should be non-invasive and serve as a basis for valid predictions
regarding surgical complications, surgical outcome, and changes
in liver functions following liver surgery.

Estimating Surgically Induced Damage
It is not sufficient to only quantify the loss of liver volume due
to tissue removal, but also necessary to quantify the volume of
liver tissue at risk due to alterations of hepatic perfusion. The key
challenge is to estimate the loss of functional tissue with respect
to the extent of resection, the resection surface, and the resection
technique. In addition, preexisting global liver diseases impair
hepatic function in a spatially heterogenous way (cf. the section
“Hepatic Diseases”), which has to be taken into account during
the surgical planning phase.

Predicting Postoperative Function of the Liver

Remnant
The functional capacity of the remnant liver should be predicted
based on the preoperative disease state and the predicted loss of
liver tissue and liver function by resection.

Modeling Challenges
Building a comprehensive model for the prediction of the hepatic
functional capacity after resection faces many challenges.

Identifying, Understanding, and Modeling Relevant

Processes in Liver Surgery
A prerequisite for building a comprehensive model of functional
prediction is the availability of high quality models reflecting
those aspects that are important for liver surgery, such as liver
function depending on perfusion, liver volume regeneration in
case of preexisting damage, or recovery of hepatic metabolic
function after resection. The key processes and mechanisms of
all these aspects must be understood in sufficient detail and
transferred to a suitable mathematical formalism. Part of the
challenge is to extend compatible model components and to
develop interfaces to bring these building blocks together.

Improving Data Availability and Quality for

Computational Models
Besides understanding the processes, further key steps for
model building are parameterizing and subsequently validating
parametrized models. A key requirement for these steps is the
availability of high-quality experimental and clinical data.

Many existing studies have only looked at a single aspect
of liver surgery, such as regeneration, liver function, or
changes in perfusion. Assembling data from different sources
is difficult, since the experimental and clinical conditions
are in general vastly different. A multitude of experimental
resection studies has been performed in rodents under controlled
conditions and with various liver diseases, but using a variety of
experimental conditions and read-out parameters. Consequently,
comparability is often limited and data integration into a single
model questionable. A similar problem is the extrapolation from
clinical data measured in one cohort to another cohort with
different characteristics, e.g., data from young subjects to old
subjects. For similar reasons, translation of results from animal
studies to the human situation is even more challenging.

One recurring problem is the quality of experimental
and clinical data, e.g., inaccurate or high-variance data, with
model predictions strongly depending on the accuracy of the
measured patient-specific data. The aforementioned issues with
experimental data require new comprehensive and targeted data
sets to ensure all needed input data were generated under
the same conditions. One key aspect is to perform targeted
experiments and studies to collect the information for model
parameterization and validation. Alternatively (or in addition),
analysis of the effects of the underlying datasets on model
predictions and quantification of the resulting uncertainties in
the predictions must be performed in order to analyze sensitivity.

Integrating Data with Computational Models
One major challenge is the integration of different types of data
(e.g., concentrations, tension, elasticity, image data, omics data,
etc.) and to handle the heterogeneity within similar datasets (e.g.,
from different laboratories, different readers) with computational
models. Standardization of data formats and models for simple
and reproducible integration of the different data sets into the

Frontiers in Physiology | www.frontiersin.org 18 November 2017 | Volume 8 | Article 906

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Christ et al. Systems Surgery

models is important (König et al., 2016). Especially with the
perspective of routine application of such models in Systems
Surgery of the liver, standardization of models and experimental
data sets will be a major challenge and facilitator.

Developing Large Multi-scale Models
Multi-scale models and models coupling distinct modeling
approaches are often not easy to compute. Reasons are that such
large computational models require substantial computational
resources (e.g., agent-based, porous media, CFD), and that
coupling of different modeling is often not supported in
simulation software and difficult to implement. Multi-scale
computational modeling requires connecting models via clearly
defined interfaces between the different scales and sub-models.
General challenges of computational modeling like parameter
fitting/overfitting, model selection, parameter selection, or
parameter identifiability are also major challenges in multi-scale
models, often aggravated due to the large number of parameters
in models spanning multiple scales.

Performing Model Reduction
Often, model reduction is necessary for efficient model
simulation (e.g., integration of a system of ODEs for metabolism
in a meso- or macroscale model of whole-liver perfusion) and
reduction of the parameter space for analysis. The overall goal
is to reduce complexity without compromising the aspects
relevant for the question at hand. Different approaches of model
reduction have been applied in the field of liver simulations, e.g.,
representative sinusoids (Schwen et al., 2015), method of proper
orthogonal decomposition (Fink and Ehlers, 2015), or the use
of an energy function (Holzapfel et al., 2000; Humphrey, 2003;
Balzani et al., 2006).

Improving Model Quality and Validating Predictions
Further important challenges are the evaluation of model quality
and validation of model predictions, which are two requirements
for application of such models in surgical support systems.
Validation of models for Systems Surgery of the liver will require
prospective clinical trials, which compare the model predictions
of liver function after resection and during regeneration with
clinical trial data. In the surgical setting, the availability of
postoperative data (invasive methods for data measurements are
not feasible) limits model validation, so this will need to be done
mostly in animal models.

Quantifying Uncertainty and Robustness
Important questions to be answered in the context of model
validation are (a) What is the uncertainty in input data and
model parameters? and (b) How sensitive is the overall system?
Together, this can quantify how robust model predictions
are against uncertainty in the generic model parameters
and individualized input data. There are various sources of
uncertainty, e.g., direct or indirect measurement of biochemical
and biophysical parameters, clinically measured physiological
and systemic functional parameters, limited resolution, and
noise in imaging. An analytic assessment of the sensitivity is
only feasible for sub-models of limited complexity. Quantifying
the robustness of an integrated multi-scale model will require
thorough parameter studies to quantify the sensitivity against

uncertainty in individual parameters and, e.g., Monte-Carlo
simulations to determine confidence ranges of model predictions
under combined parameter uncertainty.

Implementation Challenges
Addressing these clinical and modeling challenges to
achieve such model-assisted risk predictions requires a truly
multidisciplinary approach involving basic and applied, clinical
and computational scientists and engineers. On the one hand,
anatomical and physiological phenomena, as well as clinical
diagnostic and surgical procedures, need to be accurately
described and translated to suitable, improved or novel,
computational models. On the other hand, such models must
be made available in the form of interactive and user-friendly
software and thus usable not only by domain experts in systems
biology. Practical usability requires user interactivity, easy and
quick handling, automation, minimum of editing, and expert
input in the final usage, model adaptation to work on standard
workstations available in the clinics, etc. Moreover, interfaces
have to be developed, which allow integration of computational
models with widely used hospital information systems, e.g.,
using patient data for the personalization of models and adding
model-based risk evaluation to electronic patient records.

CONCLUSION

Already today, patients benefit from computational support in
the planning of liver resections. This is, however, limited to an
assessment of remnant liver volume and taking into account a
number of risk factors for postoperative liver failure. A prediction
of liver function recovery is currently not included, but would be
particularly useful in case of preexisting liver disease.

Basic biological processes involved in liver metabolism,
disease, and regeneration are well-understood, and various
computational models for these aspects are available. However,
no comprehensive model integrating all these effects on different
scales has been presented yet.

With increasing knowledge of disease mechanisms,
availability of experimental and clinical data as input for
model-based predictions, and expertise in design and integration
of computational models, the next logical step is to develop
a comprehensive model for predicting liver function and
regeneration. This type of outcome prediction will be
an indispensable part of a strategy for a patient-tailored
optimization of intervention and therapy after liver surgery.
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