
Lucian P. Smith*, Stuart L. Moodie, Frank T. Bergmann, Colin Gillespie,
SarahM. Keating, Matthias König, Chris J. Myers, Maciek J. Swat, Darren J. Wilkinson
and Michael Hucka

Systems Biology Markup Language (SBML)
Level 3 Package: Distributions, Version 1,
Release 1
https://doi.org/10.1515/jib-2020-0018
Received April 4, 2020; accepted April 17, 2020; published online July 20, 2020

Abstract: Biological models often contain elements that have inexact numerical values, since they are based
on values that are stochastic in nature or data that contains uncertainty. The Systems Biology Markup Lan-
guage (SBML) Level 3 Core specification does not include an explicit mechanism to include inexact or sto-
chastic values in amodel, but it does provide amechanism for SBML packages to extend the Core specification
and add additional syntactic constructs. The SBML Distributions package for SBML Level 3 adds the necessary
features to allow models to encode information about the distribution and uncertainty of values underlying a
quantity.

Keywords: distributions; modeling; SBML; systems biology; uncertainty.

*Corresponding author: Lucian P. Smith, University of Washington, Seattle, USA, E-mail: lpsmith@uw.edu. https://orcid.org/
0000-0001-7002-6386
Stuart L.Moodie: Eight Pillars Ltd, Edinburgh, UK, E-mail: stuart.moodie@eightpillars.uk.com. https://orcid.org/0000-0001-6191-
5595
Frank T. Bergmann:University of Heidelberg, Heidelberg, Germany, E-mail: frank.bergmann@bioquant.uni-heidelberg.de. https://
orcid.org/0000-0001-5553-4702
Colin Gillespie and Darren J. Wilkinson: Newcastle University, Newcastle, UK, E-mail: colin.gillespie@ncl.ac.uk (C. Gillespie),
darrenjwilkinson@googlemail.com (D.J. Wilkinson). https://orcid.org/0000-0003-1787-0275 (C. Gillespie). https://orcid.org/
0000-0003-0736-802X (D.J. Wilkinson)
Sarah M. Keating: University College London, London, UK, E-mail: s.keating@ucl.ac.uk. https://orcid.org/0000-0002-3356-3542
Matthias König:Humboldt-University Berlin, Berlin, Germany, E-mail: konigmatt@googlemail.com. https://orcid.org/0000-0003-
1725-179X
Chris J. Myers: University of Utah, Salt Lake City, USA, E-mail: myers@ece.utah.edu. https://orcid.org/0000-0002-8762-8444
Maciek J. Swat: QSP Simcyp, Sheffield, UK, E-mail: maciej.swat@gmail.com
Michael Hucka: California Institute of Technology, Pasadena, USA, E-mail: mhucka@library.caltech.edu. https://orcid.org/0000-
0001-9105-5960

Journal of Integrative Bioinformatics 2020; 17(2–3): 20200018

Open Access. © 2020 Lucian P. Smith et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 Public License.

https://doi.org/10.1515/jib-2020-0018
mailto:lpsmith@uw.edu
https://orcid.org/0000-0001-7002-6386
https://orcid.org/0000-0001-7002-6386
mailto:stuart.moodie@eightpillars.uk.com
https://orcid.org/0000-0001-6191-5595
https://orcid.org/0000-0001-6191-5595
mailto:frank.bergmann@bioquant.uni-heidelberg.de
https://orcid.org/0000-0001-5553-4702
https://orcid.org/0000-0001-5553-4702
mailto:colin.gillespie@ncl.ac.uk
mailto:darrenjwilkinson@googlemail.com
https://orcid.org/0000-0003-1787-0275
https://orcid.org/0000-0003-0736-802X
https://orcid.org/0000-0003-0736-802X
mailto:s.keating@ucl.ac.uk
https://orcid.org/0000-0002-3356-3542
mailto:konigmatt@googlemail.com
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0003-1725-179X
mailto:myers@ece.utah.edu
https://orcid.org/0000-0002-8762-8444
mailto:maciej.swat@gmail.com
mailto:mhucka@library.caltech.edu
https://orcid.org/0000-0001-9105-5960
https://orcid.org/0000-0001-9105-5960

SBML Level 3 Package Specification

The Distributions Package
for SBML Level 3

Authors

Lucian P Smith Stuart L Moodie
University of Washington Eight Pillars Ltd

Seattle, WA, USA Edinburgh, UK

Contributors

Frank Bergmann Colin Gillespie
University of Heidelberg University of Newcastle

Heidelberg,DE Newcastle, UK

Sarah Keating Matthias König
University College London Humboldt University

London, UK Berlin, DE

Chris Myers Maciej J Swat
University of Utah QSP Simcyp

Salt Lake City, UT, USA Certara, Sheffield, UK

Darren Wilkinson Michael Hucka
University of Newcastle California Institute of Technology

Newcastle, UK Pasadena, CA, USA

Version 1, Release 1

April 2, 2020

The latest release, past releases, and other materials related to this specification are available at
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/distrib

This release of the specification is available at
https://co.mbine.org/specifications/sbml.level-3.version-1.distrib.version-1.release-1

Contents
1 Introduction and motivation 5

1.1 What is the Distributions package? . 5
1.2 Scope . 5
1.3 This document . 5

2 Background 6
2.1 Problems with current SBML approaches . 6
2.2 Past work on this problem or similar topics . 6

2.2.1 Newcastle Proposal 2005 . 6
2.2.2 SBML Hackathon 2010: Seattle . 6
2.2.3 Statistical Models Workshop 2011: Hinxton . 7
2.2.4 HARMONY 2012: Maastricht . 8
2.2.5 COMBINE 2012: Toronto . 8
2.2.6 Package Working Group discussions 2013 . 8
2.2.7 HARMONY 2013: Connecticut . 8
2.2.8 HARMONY 2017: Seattle . 9
2.2.9 HARMONY 2018: Oxford . 9
2.2.10 HARMONY 2019: Pasadena . 9

3 Proposed syntax and semantics 10
3.1 Overview . 10
3.2 Namespace URI and other declarations necessary for using this package . 10
3.3 Primitive data types . 11

3.3.1 Type ExternalRef . 11
3.3.2 Type UncertKind . 11

3.4 Defining Distributions . 12
3.4.1 The approach . 12

3.5 Extended Math . 12
3.6 Discrete vs. continuous sampling . 13
3.7 Examples using the extended csymbol element . 14

3.7.1 Using a normal distribution . 14
3.7.2 Defining a truncated normal distribution . 15
3.7.3 Defining conditional events . 15

3.8 The DistribBase class . 17
3.9 The extended SBase class . 17
3.10 The Uncertainty class . 18

3.10.1 Attributes inherited from SBase . 19
3.11 The UncertParameter class . 19

3.11.1 The type attribute . 19
3.11.2 The value and var attributes . 20
3.11.3 The units attribute . 20
3.11.4 The definitionURL attribute . 21
3.11.5 Attributes inherited from SBase . 21
3.11.6 The child math element . 21
3.11.7 The child ListOfUncertParameters element . 21

3.12 The UncertSpan class . 21
3.13 The different UncertParameter and UncertSpan type values. 21
3.14 The uncertainty of a Species . 25
3.15 Examples using Uncertainty . 26

3.15.1 Basic Uncertainty example . 26
3.15.2 Defining a random variable . 26
3.15.3 Defining external distributions . 27

4 Interaction with other packages 29
4.1 Custom annotations for function definitions . 29
4.2 The Arrays package . 30
4.3 SBML Level 3 Version 2 . 30
4.4 Other SBML Level 3 Packages . 31

5 Use-cases and examples 32
5.1 Sampling from a distribution: PK/PD Model . 32
5.2 Multiple uses of distributions . 34
5.3 Defining confidence intervals . 34

A Validation of SBML documents 37
A.1 Validation and consistency rules . 37

Page 2 of 44

Section Contents

B Acknowledgments 43
References 44

Section Contents Page 3 of 44

Revision History 1

The following table summarizes the history of this document. 2

3Version Date Author Comments

40.1 (Draft) 15 Oct 2011 Stuart Moodie First draft

50.2 (Draft) 16 Oct 2011 Stuart Moodie Added introductory text and background info. Other minor changes etc.

60.3 (Draft) 16 Oct 2011 Stuart Moodie Filled empty invocation semantics section.

70.4 (Draft) 4 Jan 2012 Stuart Moodie Incorporated comments from Nicolas, Maciej and Sarah. Some minor
revisions and corrections.

80.5 (Draft) 6 Jan 2012 Stuart Moodie Incorporated addition comments on aim of package from Nicolas.

90.6 (Draft) 19 Jul 2012 Stuart Moodie Incorporated revisions discussed and agreed at HARMONY 2012.

100.7 (Draft) 6 Aug 2012 Stuart Moodie Incorporated review comments from Maciej and Sarah.

110.8 (Draft) 21 Dec 2012 Stuart Moodie Incorporated changes suggested at combine and subsequently through
list discussions.

120.9 (Draft) 9 Jan 2013 Stuart Moodie Incorporated corrections and comments from Maciej and Sarah.

130.10 (Draft) 10 Jan 2013 Stuart Moodie Modified based on comments from Maciej.

140.11 (Draft) 17 May 2013 Lucian Smith Modified based on Stuart’s proposals and PWG discussion.

150.12 (Draft) June 2013 Lucian Smith and
Stuart Moodie

Modified based on HARMONY 2013 discussion.

160.13 (Draft) July 2013 Lucian Smith and
Stuart Moodie

Modified based PWG discussion, particularly with respect to UncertML.

170.14 (Draft) March 2015 Lucian Smith Modified to match UncertML 3.0.

180.15 (Draft) March 2015 Lucian Smith and
Sarah Keating

Modified to match UncertML 3.0 for real this time.

190.16 (Draft) March 2015 Lucian Smith Added information about UncertML 3.0 distributions, and the distributions
custom annotations.

200.17 (Draft) June 2017 Lucian Smith Extensive update to reflect demise of UncertML 3.0, and appearance of
ProbOnto.

210.18 (Draft) June 2017 Lucian Smith Fixes to reflect feedback on version 0.17.

220.19 (Draft) June 2018 Lucian Smith Resolved id/name issues with SBML Core L3V1 vs. L3V2.

230.20 (Draft) December 2018 Lucian Smith Updates to allow distributions as new MathML csymbols.

240.21 (Draft) January 2019 Lucian Smith Revisions based on suggestions from sbml-distrib, including extensive
edits from Matthias. Extended function definitions removed.

250.22 (Draft) February 2019 Lucian Smith Addition of sampleSize and mean values of distributions for fallback.

260.23 (Draft) February 2019 Lucian Smith and
Michael Hucka

Removal of Distribution and all subclasses; replaced with a Math element
instead; collapsed UncertStatistics into Uncertainty; some other edits.

270.24 (Draft) April 2019 Lucian Smith Removal of second distrib namespace, and consolidation of the Uncert-
Parameter class based on HARMONY 2019 discussions.

280.25 (Draft) July 2019 Lucian Smith The id of a UncertParameter no longer has mathematical meaning in
any other context.

290.26 (Release
Candidate)

March 2020 Lucian Smith Add validation rules, and other corrections for release candidate.

301.0 (Release) April 2020 Lucian Smith Add qual example and adjust wording based on feedback from SBML
Editors.

Section Contents Page 4 of 44

1 Introduction and motivation 1

1.1 What is the Distributions package? 2

The Distributions package (also known as distrib) provides an extension to SBML Level 3 that extends MathML to 3

allow draws from distributions, and also provides the ability to annotate model elements with information about 4

the distribution their values were drawn from. 5

1.2 Scope 6

The Distributions package adds support to SBML for sampling from a probability distribution. In particular the 7

following are in scope: 8

■ Sampling from a univariate continuous distribution 9

■ Sampling from a univariate discrete distribution 10

■ Specification of descriptive statistics (mean, standard deviation, standard error, etc.) 11

At one point the following were considered for inclusion in this package but are now out of scope: 12

■ Sampling from a multivariate distribution 13

■ Definitions of ranges as new first-order objects (the ’Arrays’ package now fills that objective) 14

■ Sampling from user-defined probability density function 15

■ Stochastic differential equations 16

■ Other functions used to characterise a probability distribution, such as cumulative distribution functions 17

(CDF) or survival functions, etc. 18

1.3 This document 19

This draft specification describes the consensus view of workshop participants and subscribers to the sbml-distrib 20

mailing list. Although it was written by the listed authors, it does not solely reflect their views nor is it their 21

proposal alone. Rather, it is their understanding of the consensus view of what the Distributions package should 22

do and how it should do it. The contributors listed have made significant contributions to the development and 23

writing of this specification and are credited accordingly, but a more comprehensive attribution is provided in the 24

acknowledgments (Appendix B on page 43). 25

Section Contents Page 5 of 44

2 Background 1

2.1 Problems with current SBML approaches 2

SBML Level 3 Core has no direct support for encoding values sampled from distributions. Currently there is no 3

workaround within the core SBML language itself, although it is possible to define the necessary information using 4

annotations on SBML elements. Frank Bergmann proposed such an annotation scheme for use with SBML Levels 5

2 and 3 (see Section 4.1 on page 29). 6

2.2 Past work on this problem or similar topics 7

2.2.1 Newcastle Proposal 2005 8

In 2005, Colin Gillespie and others put forward a proposal 1 to introduce support for probability distributions in 9

the SBML core specification. This was based on their need to use such distributions to represent the models they 10

were creating as part of the BASIS project (http://www.basis.ncl.ac.uk). They proposed that distributions be 11

referred to in SBML using the csymbol element in the MathML subset used by the SBML Core specification. An 12

example is below: 13

14

<math xmlns=’’http://www.w3.org/1998/Math/MathML’’> 15

<apply> 16

<csymbol encoding=’’text’’ 17

definitionURL=’’http://www.sbml.org/sbml/symbols/uniformRandom’’> 18

uniformRandom 19

</csymbol> 20

<ci>mu</ci> 21

<ci>sigma</ci> 22

</apply> 23

</math> 24
25

This required that a library of definitions be maintained as part of the SBML standard and in their proposal they 26

defined an initial small set of commonly used distributions. The proposal was never implemented. 27

2.2.2 SBML Hackathon 2010: Seattle 28

The “distrib” package was discussed at the Seattle SBML Hackathon2 and this section is an almost verbatim 29

reproduction of Darren Wilkinson’s report on the meeting3. In the meeting, Darren presented an overview of the 30

problem45, building on the old proposal from the Newcastle group (see above: Section 2.2.1). There was broad 31

support at the meeting for development of such a package, and for the proposed feature set. Discussion following 32

the presentation led to consensus on the following points: 33

■ There is an urgent need for such a package. 34

■ It is important to make a distinction between a description of uncertainty regarding a model parameter and 35

the mechanistic process of selecting a random number from a probability distribution, for applications such 36

as parameter scans and experimental design 37

■ It is probably worth including the definition of PMFs, PDFs and CDFs in the package 38

■ It is worth including the definition of random distributions using particle representations within such a 39

package, though some work still needs to be done on the precise representation 40

1http://sbml.org/Community/Wiki/SBML_Leve\T1\l_3_Proposals/Distributions_and_Ranges
2http://sbml.org/Events/Hackathons/The_2010_SBML-BioModels.net_Hackathon
3http://sbml.org/Forums/index.php?t=tree&goto=6141&rid=0
4Slides: http://sbml.org/images/3/3b/Djw-sbml-hackathon-2010-05-04.pdf
5Audio: http://sbml.org/images/6/67/Wilkinson-distributions-2010-05-04.mov

Section Contents Page 6 of 44

Section 2. Background

■ It could be worth exploring the use of XML’s xinclude construct to point at particle representations held in a 1

separate file 2

■ Random numbers must not be used in rate laws or anywhere else that is continuously evaluated, as then 3

simulation behaviour is not defined 4

■ Although there is a need for a package for describing extrinsic noise via stochastic differential equations in 5

SBML, such mechanisms should not be included in this package due to the considerable implications for 6

simulator developers 7

■ We probably don’t want to layer on top of UncertML (www.uncertml.org), as this spec is fairly heavy-weight, 8

and somewhat tangential to our requirements 9

■ A random number seed is not part of a model and should not be included in the package 10

■ The definition of truncated distributions and the specification of hard upper and lower bounds on random 11

quantities should be considered. 12

It was suggested that new constructs could be introduced into SBML via user-defined functions by embedding 13

“distrib” constructs in a manner illustrated by the following example: 14

15

<listOfFunctionDefinitions> 16

<functionDefinition id="myNormRand"> 17

<distrib:####> 18

distrib binding information here #### 19

</distrib:####> 20

<math> 21

<lambda> 22

<bvar> 23

<ci>mu</ci> 24

<ci>sigma</ci> 25

</bvar> 26

<ci>mu</ci> 27

</lambda> 28

</math> 29

</functionDefinition> 30

</listOfFunctionDefinitions> 31
32

This approach allows the use of a “default value” by simulators which do not understand the package (but simulators 33

which do will ignore the <math> element). The package would nevertheless be “required”, as it will not be simulated 34

correctly by software which does not understand the package. 35

Informal discussions following the break-out covered topics such as: 36

■ how to work with vector random quantities despite that SBML does not use the vector element from MathML 37

■ how care must be taken with the semantics of random variables and the need to both: 38

• reference multiple independent random quantities at a given time 39

• make multiple references to the same random quantity at a given time 40

2.2.3 Statistical Models Workshop 2011: Hinxton 41

Detailed discussion was continued at the Statistical Models Workshop in Hinxton in June 20116. There, people 42

interested in representing statistical models in SBML came together to work out the details of how this package 43

would work in detail. Dan Cornford from the UncertML project7 attended the meeting and described how UncertML 44

could be used to describe uncertainty and in particular probability distributions. Perhaps the most significant 45

6http://sbml.org/Events/Other_Events/statistical_models_workshop_2011
7http://www.uncertml.org/

Section Contents Page 7 of 44

Section 2. Background

decision at this meeting was to adopt the UncertML resource as a controlled vocabulary that is referenced by the 1

Distributions package. 2

Much has changed since this meeting, but the output from this meeting was the basis for the first version of the 3

“distrib” draft specification. 4

2.2.4 HARMONY 2012: Maastricht 5

Two sessions were dedicated to discussion of Distributions at HARMONY based around the proposals described in 6

version 0.5 of this document. In addition there was discussion about the Arrays proposal which was very helpful in 7

solving the problem of multivariate distributions in Distributions. The following were the agreed outcomes of the 8

meeting: 9

■ The original “distrib” draft included UncertML markup directly in the function definition. This proved 10

unwieldy and confusing and has been replaced by a more elegant solution that eliminates the UncertML 11

markup and integrates well with the fallback function (see details below). 12

■ Multivariate distributions can be supported using the Arrays package to define a covariance matrix. 13

■ User defined continuous distributions would define a PDF in MathML. 14

■ Usage semantics were clarified so that invokation of a function definition implied a value was sampled from 15

the specified distribution. 16

■ It was agreed from which sections of an SBML model a distribution could be invoked. 17

■ Statistical descriptors of variables (for example mean and standard deviation) would be separated from 18

Distributions and either provided in a new package or in a later version of SBML L3 core. 19

2.2.5 COMBINE 2012: Toronto 20

The August draft of “distrib” was reviewed, and an improvement was agreed upon in the user-defined PMF part 21

of the proposal. In particular, is was agreed that the categories should be defined by distrib classes rather than 22

by passing in the information as an array. Questions were also raised about whether UncertML was suitably well 23

defined to be used as an external definition for probability distributions. This was resolved subsequent to the 24

meeting with a teleconference to Dan Cornford and colleagues. These changes are incorporated here. Finally, there 25

was considerable debate about whether to keep the dependence of distrib on the Arrays package in order to support 26

multi-variate distributions. The outcome was an agreement that we would review this at the end of 2012, based on 27

the results of an investigation into how feasible it would be to implement Arrays as a package. 28

2.2.6 Package Working Group discussions 2013 29

Early 2013 saw a good amount of discussion on the distrib Package Working Group mailing list, spurred by proposals 30

by Stuart Moodie8. While not all of his suggestions ended up being fully accepted by the group, several changes 31

were accepted, including: 32

■ To use UncertML as actual XML, instead of as a set of reference definitions. 33

■ To use UncertML to encode descriptive statistics of SBML elements such as mean, standard deviation, 34

standard error, etc.) bringing this capability back in scope for this package. 35

2.2.7 HARMONY 2013: Connecticut 36

At the HARMONY held at the University of Connecticut Health Center, further discussions revealed the importance 37

of distinguishing the ability to describe an element as a distributed variable vs. a function call within the model 38

performing a draw from a distribution. 39

8http://thestupott.wordpress.com/2013/03/12/an-improved-distrib-proposal/

Section Contents Page 8 of 44

Section 2. Background

We also decided to discard the encoding of explicit PDFs for now, as support for it is remarkably complicated, and 1

there no demand for it. The current design could be extended to support this feature so if there is demand for it in 2

the future support for explicit PDFs could be reintroduced. 3

2.2.8 HARMONY 2017: Seattle 4

In early 2017, it became clear that UncertML was no longer being worked on; the web page had lapsed, and its authors 5

had moved on to other things. At the same time, the ProbOnto ontology (Swat et al. 2016; http://probonto.org/) 6

was developed that included all the distributions from UncertML as well as a huge number of other distributions. 7

On the “distrib” mailing list, there was discussion about whether to create essentially our own version of UncertML, 8

or to implement a generic “reference” format that used ProbOnto. The v0.17 draft specification was developed 9

as a compromise ’hybrid’ system that did parts of both, so that basic distributions would be hard-coded, but the 10

ability to reference any ProbOnto ontology would also be present. The hope is that with working examples of both 11

approaches, either the hybrid approach will be approved, or if one is preferred, the other approach may be removed. 12

This version of the specification was created for presentation at HARMONY 2017 in Seattle. 13

2.2.9 HARMONY 2018: Oxford 14

At the HARMONY held at the University of Oxford, for the first time since the change from UncertML, a libSBML 15

implementation of the specification was available. This let people experiment with the package, and conclude that 16

a simpler method of defining calls to distributions was desired. It was proposed to define new MathML csymbol 17

definitions for the common distributions. Eventually, these new csymbolswere used instead of the old Distribution 18

class, greatly simplifying the proposal. 19

2.2.10 HARMONY 2019: Pasadena 20

In the weeks leading up to the HARMONY held at Caltech, the PWG discussed various options for encoding 21

uncertainties, based on different people’s requirements. At HARMONY, we were able to coalesce around an approach 22

that seems likely to work for everyone, with multiple uncertainties per element, and a single UncertParameter class 23

with a type that encapsulates what used to be encoded in an element’s class. 24

Section Contents Page 9 of 44

3 Proposed syntax and semantics 1

3.1 Overview 2

We use UML 1.0 (Unified Modeling Language; Eriksson and Penker 1998; Oestereich 1999) class diagram notation to 3

define the constructs provided by this package. We also use color in the diagrams to provide additional information 4

for the benefit of those viewing the document on media that can display color. The following are the colors used 5

and what they represent: 6

Black: Items colored black in the UML diagrams are components taken unchanged from their definition in 7

the SBML Level 3 Core specification document. 8

Green: Items colored green are components that exist in SBML Level 3 Core, but are extended by this package. 9

Class boxes are also drawn with dashed lines to further distinguish them. 10

Blue: Items colored blue are new components introduced in this package specification. They have no 11

equivalent in the SBML Level 3 Core specification. 12

Red lines: Classes with red lines in the corner are fully defined in a different figure. 13

We also use the following typographical conventions to distinguish the names of objects and data types from other 14

entities; these conventions are identical to the conventions used in the SBML Level 3 Core specification document: 15

AbstractClass: Abstract classes are never instantiated directly, but rather serve as parents of other classes. Their 16

names begin with a capital letter and they are printed in a slanted, bold, sans-serif typeface. In electronic 17

document formats, the class names defined within this document are also hyperlinked to their definitions; 18

clicking on these items will, given appropriate software, switch the view to the section in this document 19

containing the definition of that class. (However, for classes that are unchanged from their definitions in 20

SBML Level 3 Core, the class names are not hyperlinked because they are not defined within this document.) 21

Class: Names of ordinary (concrete) classes begin with a capital letter and are printed in an upright, bold, sans-serif 22

typeface. In electronic document formats, the class names are also hyperlinked to their definitions in this 23

specification document. (However, as in the previous case, class names are not hyperlinked if they are for 24

classes that are unchanged from their definitions in the SBML Level 3 Core specification.) 25

SomeThing, otherThing: Attributes of classes, data type names, literal XML, and tokens other than SBML class 26

names, are printed in an upright typewriter typeface. Primitive types defined by SBML begin with a capital 27

letter; SBML also makes use of primitive types defined by XML Schema 1.0 (Biron and Malhotra, 2000; Fallside, 28

2000; Thompson et al., 2000), but unfortunately, XML Schema does not follow any capitalization convention 29

and primitive types drawn from the XML Schema language may or may not start with a capital letter. 30

[elementName]: In some cases, an element may contain a child of any class inheriting from an abstract base class. 31

In this case, the name of the element is indicated by giving the abstract base class name in brackets, meaning 32

that the actual name of the element depends on whichever subclass is used. The capitalization follows the 33

capitalization of the name in brackets. 34

For other matters involving the use of UML and XML, we follow the conventions used in the SBML Level 3 Core 35

specification document. 36

3.2 Namespace URI and other declarations necessary for using this package 37

Every SBML Level 3 package is identified uniquely by an XML namespace URI. For an SBML document to be able 38

to use a given Level 3 package, it must declare the use of that package by referencing its URI. This version of the 39

Distributions package uses the URI: 40

“http://www.sbml.org/sbml/level3/version1/distrib/version1” 41

Section Contents Page 10 of 44

Section 3. Proposed syntax and semantics

Note that the Distributions package may be used with both SBML Level 3 Version 1 and SBML Level 3 Version 2 1

documents, with no semantic changes between the two in any distrib element, due to the addition of id and name 2

to the DistribBase class. 3

In addition, SBML documents using a given package must indicate whether the package may be used to change the 4

mathematical meaning of SBML Level 3 Core elements. This is done using the attribute required on the <sbml> 5

element in the SBML document. For the Distributions package, the value of this attribute must be “true”, as it 6

defines new csymbols that may be used in any MathML. Note that the value of this attribute must always be set to 7

“true”, even if the particular model does not contain any of these csymbols. 8

The following fragment illustrates the beginning of a typical SBML model using SBML Level 3 Version 1 and this 9

version of the Distributions package: 10

11

<?xml version="1.0" encoding="UTF-8"?> 12

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1" 13

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 14

distrib:required="true"> 15
16

The following fragment illustrates the beginning of a typical SBML model using SBML Level 3 Version 2 and this 17

version of the Distributions package: 18

19

<?xml version="1.0" encoding="UTF-8"?> 20

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" level="3" version="2" 21

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 22

distrib:required="true"> 23
24

There is no difference between the ’distrib’ part of these documents, and all package semantics are identical. 25

XML Namespace use 26

For element names, XML has clear rules about how to declare and use namespaces. In typical SBML documents, the 27

Distributions namespace will be defined as above, and elements will therefore need to be prefixed with “distrib:”. 28

In contrast to element names, XML attribute names are completely defined by the element in which they appear, 29

and never have a “default” namespace defined. The element itself declares whether any attributes should be defined 30

with a namespace prefix. 31

Following the typical convention used by SBML packages, any attribute that appears in a UML diagram in this 32

specification may either be defined with no namespace prefix, or be defined with the distrib namespace as a prefix. 33

(No attributes are defined here as extentions of existing core SBML elements, and thus none of them are required to 34

have the distrib namespace as a prefix.) 35

3.3 Primitive data types 36

The Distributions package uses data types described in Section 3.1 of the SBML Level 3 Core specification, and adds 37

the additional primitive types described below. 38

3.3.1 Type ExternalRef 39

The type ExternalRef is derived from the type stringwith the additional requirement that it be a valid URI. An 40

ExternalRef is used in the UncertParameter class to point to ontologies such as ProbOnto (Swat et al., 2016), which 41

contain the definitions of distributions and parameters. 42

3.3.2 Type UncertKind 43

The type UncertKind is derived from the type string and its values are restricted to being one of the follow- 44

ing possibilities: “coefficientOfVariation”, “kurtosis”, “mean”, “median”, “mode”, “sampleSize”, “skewness”, 45

Section Contents Page 11 of 44

Section 3. Proposed syntax and semantics

“standardDeviation”, “standardError”, “variance”, “confidenceInterval”, “credibleInterval”, “inter- 1

quartileRange”, “range”, “externalParameter”, and “distribution”. Attributes of type UncertKind cannot 2

take on any other values. The meaning of these values is discussed in the context of the UncertParameter class’s 3

definition in Section 3.11 on page 19. 4

3.4 Defining Distributions 5

3.4.1 The approach 6

The Distributions package has two simple purposes. First, it provides a mechanism for sampling a random value 7

from a probability distribution. This implies that it must define the probability distribution and then must sample a 8

random value from that distribution. Second, it provides a mechanism for describing elements with information 9

about their uncertainty. An example use case for this is to provide the standard deviation for a value. Another might 10

be describing a parameter’s distribution so it could be used in a parameter scan experiment. 11

Sampling from probability distributions is achieved by allowing new MathML elements, and encoding uncertainty by 12

extending SBase, which in turn uses the Uncertainty class. Several distributions and statistics are defined explicitly 13

in this specification, but more can be defined by referencing an external ontology such as ProbOnto through the 14

UncertParameter class. 15

When a call to a distribution is defined in the extended Math, it is sampled when it is invoked. If a particular sampled 16

value should be used multiple times, that value must be assigned to a parameter first, such as through the use of an 17

InitialAssignment or EventAssignment. When an external distribution is defined, it is not used in the math of the 18

model, but may be used externally where appropriate. 19

3.5 Extended Math 46

To allow quick access to a variety of common functions, the Distributions package allows the use of new types of 47

csymbol elements anywhere that Math is used. These csymbols are functions, and therefore must be the first child 48

of an apply element, and their arguments are predefined: you cannot call normal(mean, variance), because the 49

definition of the normal csymbol is normal(mean, stdev). 50

The newly-allowed csymbol elements are defined in Table 1 on the next page. 51

Many of the distributions take exactly two or four arguments (or exactly one or three arguments). For those functions, 52

the optional last two arguments are min and max, for when the draw from the distribution is constrained to be 53

between those two values. For all functions, the min boundary is inclusive; that is, a value of min may be returned 54

by the function (though this may be very unlikely for draws from a continuous distribution). For all continuous 55

distributions, the max boundary is not inclusive; that is, a value of max will never be returned. The continuous 56

distributions are normal, cauchy, chisquare, exponential, gamma, laplace, lognormal, and rayleigh. For the 57

discrete distributions, the max boundary is inclusive: that is, a value of max may indeed be returned. The discrete 58

distributions are binomial and poisson. 59

The value of minmust be less than the value of max for all continuous distributions, and the value of minmust be 60

less than or equal to the value of max for all discrete distributions. Additionally, the min and max values of a discrete 61

distribution must span at least one integer between them, inclusive. 62

To define a distribution with only one bound, the other bound should be defined as INF or -INF, as appropriate. 63

For those distributions that have an intrisic lower bound of 0, setting min to 0 or any negative number will have no 64

effect, but is legal. 65

The versions of cauchy and laplace with one argument draw from the corresponding distribution with that 66

argument as its scale value, and a value of “0” for its location. 67

Section Contents Page 12 of 44

Section 3. Proposed syntax and semantics

Table 1: The “definitionURL” values allowed for the csymbol of Math for documents that use the distrib package, and
the arguments those functions may take.

20URI Possible arguments

21http://www.sbml.org/sbml/symbols/distrib/normal normal(mean, stdev)
22normal(mean, stdev, min, max)

23http://www.sbml.org/sbml/symbols/distrib/uniform uniform(min, max)

24http://www.sbml.org/sbml/symbols/distrib/bernoulli bernoulli(prob)

25http://www.sbml.org/sbml/symbols/distrib/binomial binomial(nTrials, probabilityOfSuccess)
26binomial(nTrials, probabilityOfSuccess, min, max)

27http://www.sbml.org/sbml/symbols/distrib/cauchy cauchy(scale)
28cauchy(location, scale)
29cauchy(location, scale, min, max)

30http://www.sbml.org/sbml/symbols/distrib/chisquare chisquare(degreesOfFreedom)
31chisquare(degreesOfFreedom, min, max)

32http://www.sbml.org/sbml/symbols/distrib/exponential exponential(rate)
33exponential(rate, min, max)

34http://www.sbml.org/sbml/symbols/distrib/gamma gamma(shape, scale)
35gamma(shape, scale, min, max)

36http://www.sbml.org/sbml/symbols/distrib/laplace laplace(scale)
37laplace(location, scale)
38laplace(location, scale, min, max)

39http://www.sbml.org/sbml/symbols/distrib/lognormal lognormal(mean, stdev)
40lognormal(mean, stdev, min, max)

41http://www.sbml.org/sbml/symbols/distrib/poisson poisson(rate)
42poisson(rate, min, max)

43http://www.sbml.org/sbml/symbols/distrib/rayleigh rayleigh(scale)
44rayleigh(scale, min, max)

45

Fallback functions 49

If an SBML interpreter is unable to calculate one or more of the above extended MathML functions, it may simply 50

fail, or it might choose to return the mean of the given function instead. In either case, it is a good idea to inform the 51

user that the model cannot be interpreted by the software as intended. Note that the mean of a discrete distribution 52

is not necessarily a legal return value for that function, as it may not be an integer. 53

The mean values in Table 2 on the following page may be used as a fallback for software that cannot perform draws 54

from a distribution. Note that truncated versions of these functions will have different means. Note also that the 55

cauchy distribution has no mean, by definition. 56

3.6 Discrete vs. continuous sampling 70

MathML csymbols may be used in SBML Level 3 Core in both discrete and continuous contexts: InitialAssignment, 71

EventAssignment, Priority, and Delay elements are all discrete, while Rule, KineticLaw, and Trigger elements are 72

all continuous in time. For discrete contexts, the behavior of distrib-extended FunctionDefinition elements is well- 73

defined: a single random value is sampled from the distribution each time the function definition is invoked. Each 74

invocation implies one sampling operation. In continuous contexts, however, their behavior is ill-defined. More 75

information than is defined in this package (such as autocorrelation values or full conditional probabilities) would 76

Section Contents Page 13 of 44

Section 3. Proposed syntax and semantics

Table 2: The mean values for the non-truncated versions of the distribution functions. These values could potentially be
used as a fallback for simulators which are not able to draw from the distributions themselves.

57Function Fallback (mean)

58normal(mean, stdev) mean

59uniform(min, max)
min+max

2

60bernoulli(prob) prob

61binomial(nTrials, probabilityOfSuccess) nTrials ×probabilityOfSuccess

62cauchy(location, scale) undefined

63chisquare(degreesOfFreedom) degreesOfFreedom

64exponential(rate) rate−1

65gamma(shape, scale) shape × scale

66laplace(location, scale) location

67lognormal(mean, stdev) exp(mean+ stdev2/2)

68poisson(rate) rate

69rayleigh(scale) scale
p
π/2

be required to make random sampling tractable in continuous contexts, and is beyond the scope of this version 21

of the package. If some package is defined in the future that adds this information, or if custom annotations are 22

provided that add this information, such models may become simulatable. However, this package does not define 23

how to handle sampling in continuous contexts, and recommends against it: a warning may be produced by any 24

software encountering the use of a distrib-extended MathML in a continuous context. Assuming such models are 25

desirable, and the information is not provided in a separate package, this information may be incorporated into a 26

future version of this specification. 27

Any other package that defines new contexts for MathML will also be either discrete or continuous. Discrete 28

situations (such as those defined in the SBML Level 3 Qualitative Models package) are, as above, well-defined. 29

Continuous situations (as might arise within the Spatial Processes package, over space instead of over time) will most 30

likely be ill-defined. Those packages must therefore either define for themselves how to handle distrib-extended 31

MathML elements, or leave it to some other package/annotation scheme to define how to handle the situation. 32

3.7 Examples using the extended csymbol element 33

Several examples are given below that illustrate various uses of the new csymbol elements introduced by distrib. 34

3.7.1 Using a normal distribution 35

In this example, the initial value of y is set as a draw from the normal distribution nor mal (z,10): 36

37

<initialAssignment symbol="y"> 38

<math xmlns="http://www.w3.org/1998/Math/MathML"> 39

<apply> 40

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal" 41

encoding="text"> normal </csymbol> 42

<ci> z </ci> 43

<cn> 10 </cn> 44

</apply> 45

</math> 46

</initialAssignment> 47
48

Section Contents Page 14 of 44

Section 3. Proposed syntax and semantics

This use would apply a draw from a normal distribution with mean z and standard deviation 10 to the symbol y. 1

3.7.2 Defining a truncated normal distribution 2

When used with four arguments instead of two, the normal distribution is truncated to nor mal (z,10, z −2, z +2): 3

4

<initialAssignment symbol="y"> 5

<math xmlns="http://www.w3.org/1998/Math/MathML"> 6

<apply> 7

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal" 8

encoding="text"> normal </csymbol> 9

<ci> z </ci> 10

<cn type="integer"> 10 </cn> 11

<apply> 12

<minus/> 13

<ci> z </ci> 14

<cn type="integer"> 2 </cn> 15

</apply> 16

<apply> 17

<plus/> 18

<ci> z </ci> 19

<cn type="integer"> 2 </cn> 20

</apply> 21

</apply> 22

</math> 23

</initialAssignment> 24
25

This use would apply a draw from a normal distribution with mean z, standard deviation 10, lower bound z − 2 26

(inclusive) and upper bound z + 2 (not inclusive) to the SBML symbol y. 27

3.7.3 Defining conditional events 28

Simultaneous events in SBML are ordered based on their Priority values, with higher values being executed first, 29

and potentially cancelling events that fire after them. In this example, two simultaneous events have priorities 30

set with csymbols defined in distrib. The event E0 has a priority of uni f or m(0,1), while the event E1 has a 31

priority of uni f or m(0,2). This means that 75% of the time, event E1will have a higher priority than E0, and will 32

fire first, assigning a value of 5 to parameter x. Because this negates the trigger condition for E0, which is set 33

persistent=“false”, this means that E0 never fires, and the value of x remains at 5. The remaining 25% of the 34

time, the reverse happens, with E0 setting the value of x to 3 instead. 35

36

<?xml version="1.0" encoding="UTF-8"?> 37

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" 38

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 39

level="3" version="2" distrib:required="true"> 40

<model metaid="__main" id="__main"> 41

<listOfParameters> 42

<parameter metaid="__main.x" id="x" value="0" constant="false"/> 43

</listOfParameters> 44

<listOfEvents> 45

<event id="E0" useValuesFromTriggerTime="true"> 46

<trigger initialValue="true" persistent="false"> 47

<math xmlns="http://www.w3.org/1998/Math/MathML"> 48

<apply> 49

<and/> 50

<apply> 51

<gt/> 52

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time"> 53

time </csymbol> 54

<cn type="integer"> 2 </cn> 55

</apply> 56

<apply> 57

<lt/> 58

Section Contents Page 15 of 44

Section 3. Proposed syntax and semantics

<ci> x </ci> 1

<cn type="integer"> 1 </cn> 2

</apply> 3

</apply> 4

</math> 5

</trigger> 6

<priority> 7

<math xmlns="http://www.w3.org/1998/Math/MathML"> 8

<apply> 9

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/uniform" 10

encoding="text"> uniform </csymbol> 11

<cn type="integer"> 0 </cn> 12

<cn type="integer"> 1 </cn> 13

</apply> 14

</math> 15

</priority> 16

<listOfEventAssignments> 17

<eventAssignment variable="x"> 18

<math xmlns="http://www.w3.org/1998/Math/MathML"> 19

<cn type="integer"> 3 </cn> 20

</math> 21

</eventAssignment> 22

</listOfEventAssignments> 23

</event> 24

<event id="E1" useValuesFromTriggerTime="true"> 25

<trigger initialValue="true" persistent="false"> 26

<math xmlns="http://www.w3.org/1998/Math/MathML"> 27

<apply> 28

<and/> 29

<apply> 30

<gt/> 31

<csymbol encoding="text" definitionURL="http://www.sbml.org/sbml/symbols/time"> 32

time </csymbol> 33

<cn type="integer"> 2 </cn> 34

</apply> 35

<apply> 36

<lt/> 37

<ci> x </ci> 38

<cn type="integer"> 1 </cn> 39

</apply> 40

</apply> 41

</math> 42

</trigger> 43

<priority> 44

<math xmlns="http://www.w3.org/1998/Math/MathML"> 45

<apply> 46

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/uniform" 47

encoding="text"> uniform </csymbol> 48

<cn type="integer"> 0 </cn> 49

<cn type="integer"> 2 </cn> 50

</apply> 51

</math> 52

</priority> 53

<listOfEventAssignments> 54

<eventAssignment variable="x"> 55

<math xmlns="http://www.w3.org/1998/Math/MathML"> 56

<cn type="integer"> 5 </cn> 57

</math> 58

</eventAssignment> 59

</listOfEventAssignments> 60

</event> 61

</listOfEvents> 62

</model> 63

</sbml> 64
65

Section Contents Page 16 of 44

Section 3. Proposed syntax and semantics

SBase

id: SId {use="optional"}
name: string {use="optional"}

DistribBase

Figure 1: The definition of the DistribBase class. The id and name attributes defined are optional, and are identical to the
ones they inherit in SBML Level 3 Version 2 documents from SBase.

3.8 The DistribBase class 1

The DistribBase class is an abstract base class which is the parent class for every class in this Distributions package. 2

Its purpose is to replicate within the Distributions package an important change between SBML Level 3 Version 1 3

and SBML Level 3 Version 2: the addition of an optional id and name attribute to SBase. By adding these attributes 4

here, distrib may be used completely exchangeably between Level 3 Version 1 and Level 3 Version 2 documents 5

without any other modifications. The meaning of these attributes is identical, regardless of the Level/Version of the 6

document in which they appear. 7

The id attribute is of type SId, and must be unique among other ids in the SId namespace in the parent Model, and 8

has no mathematical meaning, unless stated otherwise in the definition of that object. The name attribute is of type 9

string, and is provided to allow the user to define a human-readable label for the object. It has no uniqueness 10

restrictions. 11

SBase (extended)

0...uncertainty

DistribBase

listOfUncertainties 0,1 ListOfUncertainties

0...[uncertParameter] UncertParameter

Uncertainty

Figure 2: The definition of the extended SBase class to include a new optional ListOfUncertainties child element. Intended
for use with any element with mathematical meaning, or with a Math child element. Also defines the ListOfUncertainties
and Uncertainty classes.

3.9 The extended SBase class 12

As can be seen in Figure 2, the SBML base class SBase is extended to include an optional ListOfUncertainties child 13

element, which in turn contains optional Uncertainty elements, each of which may contain a set of UncertParameter 14

objects that describe the uncertainty of the extended element. Multiple Uncertainty elements are allowed as children 15

of SBase to allow the modeler to record Uncertainty measurements from different sources (papers, experiments, 16

etc.) that may overlap and/or contradict one another. 17

In SBML Level 3 Core, one should only extend those SBase elements with mathematical meaning (Compartment, 18

Parameter, Reaction, Species, and SpeciesReference), or those SBase elements with Math children (Constraint, 19

Delay, EventAssignment, FunctionDefinition, InitialAssignment, KineticLaw, Priority, Rule, and Trigger). The Uncer- 20

Section Contents Page 17 of 44

Section 3. Proposed syntax and semantics

tainty child is added to SBase instead of to each SBML element so that other packages inherit the ability to extend 1

their own elements in the same fashion: for example, the Qualitative Models package has the QualitativeSpecies 2

class which has mathematical meaning, and a FunctionTerm class which has a Math child. Both could be given an 3

Uncertainty child containing information about the distribution or set of samples from which they were drawn. 4

A few SBML elements can interact in interesting ways that can confuse the semantics here. A Reaction element 5

and its KineticLaw child, for example, both reference the same mathematical formula, so only one should be 6

extended with an Uncertainty child element. Similarly, the uncertainty of an InitialAssignment will be identical to 7

the uncertainty of the element it assigns to, and therefore only one of those elements should be extended. 8

Other elements not listed above should probably not be given an Uncertainty child, as it would normally not 9

make sense to talk about the uncertainty of something that doesn’t have a corresponding mathematical meaning. 10

However, because packages or annotations can theoretically give new meaning (including mathematical meaning) 11

to elements that previously did not have them, this is not a requirement. 12

It is important to note that the uncertainty described is defined as being the uncertainty at the moment the element’s 13

mathematical meaning is calculated, and does not describe the uncertainty of how that element changes over time. 14

For a Species, Parameter, Compartment, and SpeciesReference, this means that it is the uncertainty of their initial 15

values, and does not describe the uncertainty in how those values evolve in time. The reason for this is that other 16

SBML constructs all describe how (or if) the values change in time, and it is those other constructs that should be 17

used to describe a symbol’s time-based uncertainty. For example, a Species whose initial value had uncertainty 18

due to instrument precision could have an Uncertainty child describing this. A Species whose value was known 19

to change over time due to unknown processes, but which had a known average and standard deviation could be 20

given an AssignmentRule that set that Species amount to the known average, and the AssignmentRule itself could 21

be given an Uncertainty child describing the standard deviation of the variability. 22

3.10 The Uncertainty class 23

The Uncertainty class is a collection of zero or more statistical measures related to the uncertainty of the parent 24

SBML element. It may only contain one of each type of measurement, which means that each of its UncertParameter 25

children must have a unique type attribute for every value but “externalParameter”. Each UncertParameter child 26

with a type of “externalParameter” must, in turn, have a unique definitionURL value. If a given SBML element 27

has multiple measures of the same type (for example, as measured from different sources or different experiments), 28

it should be given multiple Uncertainty children. Each Uncertainty child must be a unique set of statistical measures. 29

These statistical measures do not numerically affect simulation of the model. They are, in essence, a controlled 30

annotation format specifically designed for this sort of information. Tools may use this information as they wish, 31

just as they can with other annotation information. 32

Note that for elements that change in value over time, the described uncertainty applies only to the element’s initial 33

state, and not to how it changes in time. For typical simulations, this means the element’s initial assignment. 34

The child UncertParameter children are named according to their class, so any UncertSpan child will have the ele- 35

ment name uncertSpan, and any UncertParameter base class child will have the element name uncertParameter. 36

Propagation of error 37

It may be possible to propagate the error defined in Uncertainty elements through the mathematics defined in a 38

simulation of the model. Be advised that this will be a complicated system, and may involve calculating partial 39

derivates of equations that are not explicitly encoded. Many simulators choose instead to estimate the error through 40

stochastic simulations. Either approach should be possible with a properly encoded distrib model. 41

Section Contents Page 18 of 44

Section 3. Proposed syntax and semantics

3.10.1 Attributes inherited from SBase 1

An Uncertainty always inherits the optional metaid and sboTerm attributes, and inherits optional id and name 2

attributes as described in Section 3.8 on page 17. The id of an Uncertainty has no mathematical meaning. 3

SBase

type: UncertKind
value: double { use="optional" }
var: SIdRef { use="optional" }
units: UnitSIdRef {use="optional" }
definitionURL: ExternalRef { use="optional" }

UncertParameter

DistribBase

valueLower: double { use="optional" }
varLower: SIdRef { use="optional" }
valueUpper: double { use="optional" }
varUpper: SIdRef { use="optional" }

UncertSpan

listOfUncertParameters 0,1 ListOfUncertParameters

math
Math

xmlns: string {”http://www.w3.org/1998/Math/MathML"}

{MathML content describing distribution}

0,1

[uncertParameter] 0.. UncertParameter

Figure 3: The definition of the UncertParameter, UncertSpan, and ListOfUncertParameters classes. These classes
allow an Uncertainty to define an uncertainty numerically.

3.11 The UncertParameter class 22

Each UncertParameter defines one uncertainty statistic about the parent element. It has one required attribute type 23

of type UncertKindwhich defines what statistic it describes (i.e. “mean”, “standardDeviation”, “distribution”, 24

etc.). Its other attributes (value, var, units, and definitionURL), and children (math and listOfUncertParame- 25

ters) are all optional, each useable according to which type it is. 26

3.11.1 The type attribute 27

The type attribute defines what the UncertParameter describes. Depending on the type, other attributes will 28

be allowed or not, and the class must either be the base UncertParameter or the UncertSpan class, according to 29

Table 3 on the next page. 30

Section Contents Page 19 of 44

Section 3. Proposed syntax and semantics

Table 3: Values for the type attribute of a UncertParameter, the class that should be used with that type, and the attributes
and children that are allowed.

4Value Class un
its

va
lu

e/
va

r

va
lu

eL
ow

er
/v

ar
Lo

w
er

va
lu

eU
pp

er
/v

ar
U

pp
er

de
fin

iti
on

U
R

L

m
at

h

lis
tO

fU
nc

er
tP

ar
am

et
er

s

5coefficientOfVariation UncertParameter

6kurtosis UncertParameter

7mean UncertParameter

8median UncertParameter

9mode UncertParameter

10sampleSize UncertParameter

11skewness UncertParameter

12standardDeviation UncertParameter

13standardError UncertParameter

14variance UncertParameter

15confidenceInterval UncertSpan

16credibleInterval UncertSpan

17interquartileRange UncertSpan

18range UncertSpan

19distribution UncertParameter

20externalParameter either

21

3.11.2 The value and var attributes 28

The optional value attribute (of type double) is used when the UncertParameter equals the given number, and the 29

optional var attribute (of type SIdRef) is used when the value of an UncertParameter equals the referenced element 30

with mathematical meaning. Either attribute may be used for those UncertParameter types with a single value, but 31

not both. 32

3.11.3 The units attribute 33

The optional units attribue of an UncertParameter is of type UnitSIdRef. The UnitSIdRef is defined in the SBML 34

Level 3 Core specification, but in brief, it may either be the SId of a UnitDefinition in the Model, or a predefined SI 35

unit from the Table 2 in the SBML Level 3 Core specification. The units of uncertainty statistics are generally either 36

dimensionless or the same as the units of the parent, according to the formula that defines the value. A mean and a 37

standardDeviation, for example, are always the same units as the parent, while a coefficientOfVariation is 38

dimensionless. 39

Section Contents Page 20 of 44

Section 3. Proposed syntax and semantics

3.11.4 The definitionURL attribute 1

The optional definitionURL attribute (of type ExternalRef) may be used when the type of the UncertParam- 2

eter is “distribution”, and must be used when the type of the UncertParameter is “externalParameter”. The 3

ExternalRef should point to an ontology URL, distribution csymbol, or other unique definition string that defines 4

what is meant by this UncertParameter. The definitionURLmust not be defined if the type is any other value: the 5

other types are already completely defined. 6

3.11.5 Attributes inherited from SBase 7

An UncertParameter always inherits the optional metaid and sboTerm attributes, and inherits optional id and name 8

attributes as described in Section 3.8 on page 17. The id of a UncertParameter does not take on the mathematical 9

value of its value attribute, and may not be used in mathematical contexts. Instead, if the value of the element is to 10

be used elsewhere, the var attribute should be used instead, and that referenced value used in other contexts. 11

3.11.6 The child math element 12

The optional math element contains MathML, and may only be used for an UncertParameter of type “distribution” 13

or “externalParameter”. When defined for a “distribution”, the MathML should define that distribution, such 14

as by using one of the extended csymbol definitions from this specification. 15

3.11.7 The child ListOfUncertParameters element 16

The optional child ListOfUncertParameters element may only be used for an UncertParameter of type “distri- 17

bution” or “externalParameter”. Unlike an Uncertainty, there are no uniqueness restrictions among the children 18

of this element: any number of UncertParameter elements of any typemay be used, according to whatever makes 19

sense for the statistic defined by the parent definitionURL. 20

3.12 The UncertSpan class 21

The UncertSpan class defines a span of values that define an uncertainty statistic such as confidence interval or 22

range. It inherits from UncertParameter, and adds four optional attributes, varLower and varUpper, of type SIdRef, 23

and valueLower and valueUpper, of type double. Exactly one of the attributes varLower and valueLowermay be 24

defined, and exactly one of the attributes varUpper and valueUppermay be defined. If no attributes are defined, 25

the parameters of the span are undefined. If only one attribute is defined (one of the upper or lower attributes), that 26

aspect of the span is defined, and the other end is undefined. The span is fully defined if two attributes (one lower 27

and one upper) are defined. 28

The value of the lower attribute (whichever is defined) must be lesser or equal to the value of the upper attribute 29

(whichever is defined), at the initial conditions of the model. The Uncertainty element cannot affect the core 30

mathematics of an SBML model, but if it is used in a mathematical context during simulation of the model, this 31

restriction on the attribute values must be maintained, or the UncertSpan object as a whole will be undefined. 32

Like the units attribute on an UncertParameter, the units attribute is provided if valueUpper and/or valueLower 33

is defined. The units on both the upper and lower ends of the span must match each other, if defined. The units for 34

span ends defined by reference may be obtained from the referenced SBML element. 35

3.13 The different UncertParameter and UncertSpan type values. 36

The UncertKind values each have a particular definition. The following kinds are all single-value types, and thus 37

may either be defined by value or var, and must only be used for UncertParameter elements, not UncertSpan 38

elements. Definitions taken from https://web.archive.org/web/20161029215725/uncertml.org/). 39

■ coefficientOfVariation: For a random variable with mean µ and strictly positive standard deviation σ, 40

the coefficient of variation is defined as the ratio σ
|µ| . One benefit of using the coefficient of variation rather 41

Section Contents Page 21 of 44

Section 3. Proposed syntax and semantics

than the standard deviation is that it is unitless. 1

■ kurtosis: The kurtosis of a distribution is a measure of how peaked the distribution is. The kurtosis is defined 2

as µ4/σ4 where µ4 is the fourth central moment of the distribution and σ is its standard deviation. 3

■ mean: The arithmetic mean (typically just the mean) is what is commonly called the average. It is defined 4

as x̄ = 1
n ·∑n

i=1 xi where xi represents with i th observation of the quantity x in the sample set of size n. It is 5

related to the expected value of a random variable, µ = E [X] in that the population mean, µ, which is the 6

average of all quantities in the population and is typically not known, is replaced by its estimator, the sample 7

mean x̄. Note that this statistic does not deal with issues of sample size, rather the mean is taken to refer to 8

the population mean. 9

■ median: The median is described as the numeric value separating the higher half of a sample (or population) 10

from the lower half. The median of a finite list of numbers can be found by arranging all the observations 11

from lowest value to highest value and picking the middle one. If there is an even number of observations, 12

then there is no single middle value, then the average of the two middle values is used. The median is also the 13

0.5 quantile, or 50th percentile. 14

■ mode: The mode is the value that occurs the most frequently in a data set (or a probability distribution). It 15

need not be unique (e.g., two or more quantities occur equally often) and is typically defined for continuous 16

valued quantities by first defining the histogram, and then giving the central value of the bin containing the 17

most counts. 18

■ sampleSize: The sample size is a direct count of the number of observations made or the number of samples 19

measured. It is used in several other statistical measurements, and can be used to convert one to another. 20

■ skewness: The skewness of a random variable is a measure of how asymmetric the corresponding probability 21

distribution is. The skewness is defined as µ3/σ3 where µ3 is the 3rd central moment of the distribution and σ 22

is its standard deviation. 23

■ standardDeviation: The standard deviation of a distribution or population is the square root of its vari- 24

ance and is given by σ =
√

E [(X −µ)2] where µ = E [X]. The population standard deviation is given by 25

σ =
√

1
n

∑n
i=1

(
xi − x̄

)2 where x̄ = 1
n ·∑n

i=1 xi , and xi represents the i th observation of the quantity x in the 26

population of size n. The standard deviation is a widely used measure of the variability or dispersion since it 27

is reported in the natural units of the quantity being considered. Note that if a finite sample of a population 28

has been used then the sample standard deviation is the appropriate unbiased estimator to use. 29

■ standardError: The standard error is the standard deviation of estimates of a population value. If that 30

population value is a mean, this statistic is called the standard error of the mean. It is calculated as the 31

standard deviation of a sample divided by the square root of the number of the sample size. As the sample 32

size increases, the sample size draws closer to the population size, and the standard error approaches zero. 33

σx̄ =σ/
p

n. 34

■ variance: The variance of a random quantity (or distribution) is the average value of the square of the 35

deviation of that variable from its mean, given by σ2 = Var[X] = E [(X −µ)2] where µ= E [X]. The complete 36

population variance is given by σ2 = 1
n

∑n
i=1

(
xi − x̄

)2 where x̄ = 1
n ·∑n

i=1 xi , and xi represents the i th observa- 37

tion of the quantity x in the population of size n. This is the estimator of the population variance and should 38

be replaced by the sample variance when using samples of finite size. 39

The following UncertKind values are all spans, and may only be used for UncertSpan elements. They are defined by 40

an upper and lower value. Definitions taken from taken from https://web.archive.org/web/20161029215725/ 41

uncertml.org/). 42

■ confidenceInterval: For a univariate random variable x, a confidence interval is a range [a,b], a < b, so 43

that x lies between a and b with given probability. For example, a 95% confidence interval is a range in which 44

Section Contents Page 22 of 44

Section 3. Proposed syntax and semantics

x falls 95% of the time (or with probability 0.95). Confidence intervals provide intuitive summaries of the 1

statistics of the variable x. 2

If x has a continuous probability distribution P , then [a,b] is a 95% confidence interval if
∫ b

a P (x) = 0.95. 3

Unless specified otherwise, the confidence interval is usually chosen so that the remaining probability is split 4

equally, that is P (x < a) = P (x > b). If x has a symmetric distribution, then the confidence intervals are usually 5

centered around the mean. However, non-centered confidence intervals are possible and are better described 6

by their lower and upper quantiles or levels. For example, a 50% confidence interval would usually lie between 7

the 25% and 75% quantiles, but could in theory also lie between the 10% and 60% quantiles, although this 8

would be rare in practice. The confidenceInterval allows you the flexibility to specify non-symmetric 9

confidence intervals however in practice we would expect the main usage to be for symmetric intervals. 10

The confidenceInterval child of a Uncertainty is always the 95% confidence interval. For other confidence 11

intervals, use an UncertParameter of type “externalParameter” instead. 12

■ credibleInterval: In Bayesian statistics, a credible interval is similar to a confidence interval determined 13

from the posterior distribution of a random variable x. That is, given a prior distribution p(x) and some 14

observations D, the posterior probability p(x | D) can be computed using Bayes theorem. A 95% credible 15

interval is then any interval [a,b] so that
∫ b

a p(x | D) = 0.95, that is the variable x lies in the interval [a,b] with 16

posterior probability 0.95. Note that the interpretation of a credible interval is not the same as a (frequentist) 17

confidence interval. 18

The credibleInterval child of a Uncertainty is always the 95% credible interval. For other credibility 19

intervals, use an UncertParameter of type “externalParameter” instead. 20

■ interquartileRange: The interquartile range is the range between the 1st and 3rd quartiles. It contains the 21

middle 50% of the sample realisations (or of the sample probability). It is typically used and shown in box 22

plots. 23

■ range: The range is the interval [a,b] so that a < b and contains all possible values of x. This is also often 24

called the statistical range, which is the distance from the smallest value to the largest value in a sample 25

dataset. For a sample dataset X = (x1, ..., xN), the range is the distance from the smallest xi to the largest. It is 26

often used as a first estimate of the sample dispersion. 27

Finally, we have the “distribution” and “externalParameter” types: 28

■ distribution: If the uncertainty is defined by a known distribution, that distribution may either be defined 29

by using the child math element, or by using the definitionURL. When the math child is used, that math 30

should contain the distribution in question: typically this will be a distribution csymbol but may be something 31

more complicated, like a piecewise function. If the definitionURL is used, many more distributions may 32

be used than are defined in this specification (like an externalParameter, below). To fully define this 33

distributon, it will almost certainly be necessary to further define that distribution with child UncertParameter 34

elements. For example, a Beta distribution takes two parameters (α and β), each of which could be defined by 35

a child UncertParameter of type “externalParameter”, with appropriate definitionURL values. A type of 36

value “distribution” is only valid for UncertParameter elements, not UncertSpan elements. 37

■ externalParameter: This type is uniquely described by an appropriate definitionURL, and is provided to 38

allow a modeler to encode externally-provided parameters not otherwise explicitly handled by this specifi- 39

cation. The range of possibilities is vast, so modelers should ensure that the tool they wish to use encodes 40

support for any UncertParameter they define. As an external parameter may take any form, there are no 41

restrictions on what other attributes or children that may be used by an UncertParameter of this type: it may 42

be a single value; it may be a span; it may be defined by a child math element; it may be defined by child 43

UncertParameter elements; it may be defined by any combination of the above. The only restriction is that 44

the definitionURLmust be defined for any UncertParameter of type “externalParameter”. This type value 45

may be used for either UncertParameter or UncertSpan elements. 46

Section Contents Page 23 of 44

Section 3. Proposed syntax and semantics

As an example, here’s an UncertSpan that defines the 99% confidence interval of a Parameter (using made-up 1

definitionURL values): 2

3

<parameter id="p1" value="3.42" constant="true"> 4

<distrib:listOfUncertainties> 5

<distrib:uncertainty> 6

<distrib:uncertSpan type="externalParameter" lowerValue="3.19" upperValue="3.83" 7

definitionURL="http://dist.org/CI"> 8

<distrib:listOfUncertParameters> 9

<distrib:uncertParameter type="externalParameter" value="0.99" 10

definitionURL="http://dist.org/CIpercent"> 11

</distrib:listOfUncertParameters> 12

</distrib:uncertSpan> 13

</distrib:uncertainty> 14

</distrib:listOfUncertainties> 15

</parameter> 16
17

As examples, the following statistics are not defined by a single value nor by a range, and would therefore be good 18

candidates for encoding as an external parameter. These terms were included in the now-defunct UncertML (and 19

the definitions were again taken from https://web.archive.org/web/20161029215725/uncertml.org/), and 20

may also be findable in other ontologies such as STATO (which has a searchable database at https://www.ebi.ac. 21

uk/ols/ontologies/stato): 22

■ centralMoment: For a given positive natural number k, the kth central moment of a random variable x is 23

defined as µk = E [(x −E [x])k]. That is, it is the expected value of the deviation from the mean to the power k. 24

In particular, µ0 = 1, µ1 = 0 and µ2 is the variance of x. 25

■ correlation: The correlation between two random variables x1 and x2 is the extent to which these variable 26

vary together in a linear fashion. It is characterized by the coefficient ρ1,2 = E [(x1 −µ1)(x2 −µ2)]/σ1σ2 where 27

µ1 and µ2 are the means of x1 and x2 respectively, and σ1 and σ2 are their respective standard deviations. 28

Note this is strictly not a description of uncertainty, but it can be useful to represent the correlation between 29

two variables. Generally a covariance specification would be preferred since this describes the uncertainty. 30

■ decile: A decile, d , is any of the nine values that divide the sorted quantities into ten equal parts, so that 31

each part represents 1/10 of the sample, population or distribution. The first decile is equivalent to the 10th 32

percentile. 33

■ moment: For a given positive natural number k, the kth moment of a random variable x is defined asµk = E [xk]. 34

In particular, µ0 = 1 and µ1 is the mean of x. The moments can be defined with respect to some point a, that 35

is µk (a) = E [(x −a)k]. Moments defined about the mean are called central moments. 36

■ percentile: A percentile is the value of a quantity below which a certain percent of values fall. This can be 37

defined for samples, populations and distributions. For finite samples there is no widely accepted method, but 38

all methods essentially rank the quantities and then use some interpolation to compute the percentile, unless 39

the sample size n is a multiple of 100. For probability distributions the inverse cumulative density function 40

can be used. The most widely used method is as follows: to estimate the value, xp , of the pth percentile of 41

an ascending ordered dataset containing n elements with values x1, x2, ..., xn first compute ρ = p
100 (n −1)+1. 42

Now ρ is split into its integer component, k, and decimal component, d , such that ρ = k +d . xp is then 43

calculated as xp = xk +d(xk+1 −xk) where 1 < ρ < n with special cases xp = x1 [ρ = 1]; xn [ρ = n]. 44

■ probability: Given a random variable x with probability density function f (x), the probability that x lies in 45

some part of its domain X is defined as P (x ∈X) = ∫
x∈X f (x). X can be defined as a lower- or upper-bounded 46

range, e.g., P (x < 3.2), or as the intersection of several such ranges, e.g., P (x ≥ 1.7∩x < 3.2). 47

■ quantile: Given a random variable x, the n-quantiles are the values of x which split the domain into n 48

regions of equal probability. For instance, the kth n-quantile is the value qk for which P (x < qk) = k
n . For some 49

common values of n, the n-quantiles have additional names, namely quartiles for n = 4, deciles for n = 10 50

Section Contents Page 24 of 44

Section 3. Proposed syntax and semantics

and percentiles for n = 100. More generally, a quantile can be associated to any probability p, so that q is the 1

value of x below which a proportion p of the probability lies, i.e., P (x < q) = p. The plot on the right shows the 2

1st to 9th 10-quantiles (or deciles) for a normal distribution (µ= 4, σ= 1) as orange dots. The blue curve is the 3

cumulative density function of x. Note how the quantiles split the probability (y-axis) into 10 equal regions. 4

■ quartile: The quartiles are the 4-quantiles, that is the 4 values of x below which lies a proportion 0.25, 0.50, 5

0.75 and 1 of the probability. One can also think of them as the 4 values of x which split the domain into 4 6

regions of equal probability. 7

3.14 The uncertainty of a Species 8

A Species is a unique SBML construct in that its value is either an amount or a concentration, depending on 9

the value of its hasOnlySubstanceUnits attribute (“true” for amount, or “false” for concentration). The value 10

of its uncertainty tracks with this: if the value of hasOnlySubstanceUnits on the parent Species is “true”, the 11

uncertainty is in terms of amounts, and if “false”, the uncertainty is in terms of concentration. 12

If a Species is being modeled in SBML in amounts, but was measured in terms of its concentration, or visa versa, an 13

InitialAssignment should be created that explicitly handles this conversion and assigns the appropriate value to the 14

Species, as in the example below. 15

16

<listOfCompartments> 17

<compartment id="C" spatialDimensions="3" size="2" constant="true"> 18

<distrib:listOfUncertainties> 19

<distrib:uncertainty> 20

<distrib:uncertParameter type="standardDeviation" value="0.15"/> 21

</distrib:uncertainty> 22

</distrib:listOfUncertainties> 23

</compartment> 24

</listOfCompartments> 25

<listOfSpecies> 26

<species id="S_amt" compartment="C" hasOnlySubstanceUnits="true" 27

boundaryCondition="false" constant="false"/> 28

</listOfSpecies> 29

<listOfParameters> 30

<parameter id="S_conc" value="3.4" constant="true"> 31

<distrib:listOfUncertainties> 32

<distrib:uncertainty> 33

<distrib:uncertParameter type="standardDeviation" value="0.3"/> 34

</distrib:uncertainty> 35

</distrib:listOfUncertainties> 36

</parameter> 37

</listOfParameters> 38

<listOfInitialAssignments> 39

<initialAssignment symbol="S_amt"> 40

<math xmlns="http://www.w3.org/1998/Math/MathML"> 41

<apply> 42

<times/> 43

<ci> S_conc </ci> 44

<ci> C </ci> 45

</apply> 46

</math> 47

</initialAssignment> 48

</listOfInitialAssignments> 49
50

Here, the uncertainty of the species “S_amt” is not set explicitly, and instead can be derived from the uncertainty of 51

the values in its initial assignment (“S_conc” and “C”). 52

Section Contents Page 25 of 44

Section 3. Proposed syntax and semantics

3.15 Examples using Uncertainty 1

Several examples are given to illustrate the use of the Uncertainty class: 2

3.15.1 Basic Uncertainty example 3

In this examples, a species is given an Uncertainty child to describe its standard deviation: 4

5

<species id="s1" compartment="C" initialAmount="3.22" hasOnlySubstanceUnits="true" 6

boundaryCondition="false" constant="false"> 7

<distrib:listOfUncertainties> 8

<distrib:uncertainty> 9

<distrib:uncertParameter type="standardDeviation" distrib:value="0.3"/> 10

</distrib:uncertainty> 11

</distrib:listOfUncertainties> 12

</species> 13
14

Here, the species with an initial amount of 3.22 is described as having a standard deviation of 0.3, a value that might 15

be written as “3.22 ± 0.3”. This is probably the simplest way to use the package to introduce facts about the 16

uncertainty of the measurements of the values present in the model. 17

It is also possible to include additional information about the species, should more be known: 18

19

<species id="s1" compartment="C" initialAmount="3.22" hasOnlySubstanceUnits="true" 20

boundaryCondition="false" constant="false"> 21

<distrib:listOfUncertainties> 22

<distrib:uncertainty> 23

<distrib:listOfUncertParameters> 24

<distrib:uncertParameter type="mean" distrib:value="3.2"/> 25

<distrib:uncertParameter type="standardDeviation" distrib:value="0.3"/> 26

<distrib:uncertParameter type="variance" distrib:value="0.09"/> 27

</distrib:listOfUncertParameters> 28

</distrib:uncertainty> 29

</distrib:listOfUncertainties> 30

</species> 31
32

In this example, the initial amount of 3.22 is noted as having a mean of 3.2, a standard deviation of 0.3, and a variance 33

of 0.09. Note that the standard deviation can be calculated from the variance (or visa versa), but the modeler has 34

chosen to include both here for convenience. Note too that this use of the Uncertainty element does not imply that 35

the species amount comes from a normal distribution with a mean of 3.2 and standard deviation of 0.3, but rather 36

that the species amount comes from an unknown distribution with those qualities. If it is known that the value 37

was drawn from a particular distribution, an UncertParameter of type “distribution” should be used, rather than 38

UncertParameter elements of type “mean” and “standardDeviation”. 39

Note also that 3.22 (the initialAmount) is different from 3.2 (the mean): evidently, this model was constructed as a 40

realization of the underlying uncertainty, instead of simply using the mean. 41

3.15.2 Defining a random variable 42

In addition to describing the uncertainty about an experimental observation one can also use this mechanism 43

to describe a parameter as a random variable. In the example below the parameter, Z, is defined as following a 44

gamma distribution, with a given shape and scale. No value is given for the parameter so it is then up the modeler to 45

decide how to use this random variable. For example they may choose to simulate the model in which case they 46

may provide values for shape_Z and scale_Z and then sample a random value from the simulation. Alternatively 47

they may choose to carry out a parameter estimation and use experimental observations to estimate shape_Z and 48

scale_Z. 49

For added information, the modeler has chosen to include the observed mean and variance of the value. These are 50

Section Contents Page 26 of 44

Section 3. Proposed syntax and semantics

close to the expected mean and variance from the given distribution (1.0 and 0.1, respectively, given the shape and 1

scale), but were slightly different due to the sample size. 2

3

<listOfParameters> 4

<parameter id="shape_Z" value="10" constant="true"/> 5

<parameter id="scale_Z" value="0.1" constant="true"/> 6

<parameter id="Z" constant="true"> 7

<distrib:listOfUncertainties> 8

<distrib:uncertainty> 9

<distrib:uncertParameter type="distribution"> 10

<math xmlns="http://www.w3.org/1998/Math/MathML"> 11

<apply> 12

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/gamma" 13

encoding="text"> gamma </csymbol> 14

<ci> shape_Z </ci> 15

<ci> scale_Z </ci> 16

</apply> 17

</math> 18

</distrib:uncertParameter> 19

<distrib:uncertParameter type="mean" value="1.03"/> 20

<distrib:uncertParameter type="variance" value="0.97"/> 21

</distrib:uncertainty> 22

</distrib:listOfUncertainties> 23

</parameter> 24

</listOfParameters> 25
26

3.15.3 Defining external distributions 27

If an SBML value is drawn from a distribution not defined explicitly in this specification, it is necessary to use 28

an UncertParameter of type “externalParameter” to define the distribution’s parameters. In this example, the 29

parameter p1 was drawn from a zeta distribution, with a shape parameter of 2.37. An UncertParameter of type 30

“distribution” is created with the ’zeta’ URI, with a child UncertParameter of type “externalParameter” with the 31

’shape’ URI for its definitionURL. For readability, ’zeta’ and ’shape’ were used as the names of these parameters. 32

33

<parameter id="p1" constant="true"> 34

<listOfUncertainties xmlns="http://www.sbml.org/sbml/level3/version1/distrib/version1"> 35

<uncertainty> 36

<uncertParameter type="distribution" name="zeta" 37

definitionURL="http://www.probonto.org/ontology#PROB_k0001263"> 38

<listOfUncertParameters> 39

<uncertParameter type="externalParameter" name="shape" value="2.37" 40

definitionURL="http://purl.obolibrary.org/obo/STATO_0000436"/> 41

</listOfUncertParameters> 42

</uncertParameter> 43

</uncertainty> 44

</listOfUncertainties> 45

</parameter> 46
47

It is also possible to create even more complex structures with the UncertParameter scheme. In this example, we 48

define a categorical distribution based on data from three patients. The parent UncertParameter is defined to be the 49

’categorical’ distribution, with three ’category’ children, each with two child ’value’ and ’probability’ parameters. 50

Collectively, they define a distribution where a value of 1.01 has a probability of 50%, a value of 2.24 has a probability 51

of 25%, and a value of 1.72 has a probability of 25%. (The definitionURL examples here were made up for the 52

purposes of this example, to be readable. In an actual SBML document, they would point to existing external 53

ontologies.) 54

Section Contents Page 27 of 44

Section 3. Proposed syntax and semantics

1

<listOfUncertainties xmlns="http://www.sbml.org/sbml/level3/version1/distrib/version1"> 2

<uncertainty> 3

<listOfUncertParameters> 4

<uncertParameter type="distribution" definitionURL="http://dist.org/categorical"> 5

<listOfUncertParameters> 6

<uncertParameter type="externalParameter" id="p1" definitionURL="http://dist.org/category"> 7

<listOfUncertParameters> 8

<uncertParameter type="externalParameter" value="1.01" 9

definitionURL="http://dist.org/cat_val"/> 10

<uncertParameter type="externalParameter" value="0.5" 11

definitionURL="http://dist.org/cat_prob"/> 12

</listOfUncertParameters> 13

</uncertParameter> 14

<uncertParameter type="externalParameter" id="p2" definitionURL="http://dist.org/category"> 15

<listOfUncertParameters> 16

<uncertParameter type="externalParameter" value="2.24" 17

definitionURL="http://dist.org/cat_val"/> 18

<uncertParameter type="externalParameter" value="0.25" 19

definitionURL="http://dist.org/cat_prob"/> 20

</listOfUncertParameters> 21

</uncertParameter> 22

<uncertParameter type="externalParameter" id="p3" definitionURL="http://dist.org/category"> 23

<listOfUncertParameters> 24

<uncertParameter type="externalParameter" value="1.72" 25

definitionURL="http://dist.org/cat_val"/> 26

<uncertParameter type="externalParameter" value="0.25" 27

definitionURL="http://dist.org/cat_prob"/> 28

</listOfUncertParameters> 29

</uncertParameter> 30

</listOfUncertParameters> 31

</uncertParameter> 32

</listOfUncertParameters> 33

</uncertainty> 34

</listOfUncertainties> 35
36

Section Contents Page 28 of 44

4 Interaction with other packages 1

4.1 Custom annotations for function definitions 2

Before this package was available, a collection of SBML simulator authors developed an ad hoc convention for 3

exchanging annotated FunctionDefinition objects that represented draws from distributions. This convention 4

is described at http://co.mbine.org/specifications/sbml.proposal.distrib-annotations.version-1 by 5

Frank T. Bergmann, and represents a basic starting point for any modeler interested in exchanging SBML models 6

containing draws from distributions. 7

When implementing Distributions support, it would be possible to include “backwards” support for this annotation 8

convention by wrapping any calls to a distribution in a FunctionDefinition, and annotating that using this scheme. 9

Table 4 is taken from the above document by Frank Bergmann, and can be used as a template if translating from 10

that FunctionDefinition system to the Distributions extended Math system. The suggested fallback function returns 11

the mean of the distribution. 12

Table 4: The annotation URLs.
13Id Distribution Definition URL Fallback

14uniform Uniform http://en.wikipedia.org/wiki/Uniform_distribution_(continuous) lambda(a, b, a+b
2)

15normal Normal http://en.wikipedia.org/wiki/Normal_distribution lambda(m, s, m)

16exponential Exponential http://en.wikipedia.org/wiki/Exponential_distribution lambda(l, 1/l)

17gamma Gamma http://en.wikipedia.org/wiki/Gamma_distribution lambda(a, b, a ×b)

18poisson Poisson http://en.wikipedia.org/wiki/Poisson_distribution lambda(µ, µ)

19lognormal Lognormal http://en.wikipedia.org/wiki/Log-normal_distribution lambda(z, s, ez+s2/2)

20chisq Chi-squared http://en.wikipedia.org/wiki/Chi-squared_distribution lambda(ν, ν)

21laplace Laplace http://en.wikipedia.org/wiki/Laplace_distribution lambda(a, 0)

22cauchy Cauchy http://en.wikipedia.org/wiki/Cauchy_distribution lambda(a, a)

23rayleigh Rayleigh http://en.wikipedia.org/wiki/Rayleigh_distribution lambda(s, s ×
p
π/2)

24binomial Binomial http://en.wikipedia.org/wiki/Binomial_distribution lambda(p, n, p ×n)

25bernoulli Bernoulli http://en.wikipedia.org/wiki/Bernoulli_distribution lambda(p, p)

As an example, here is a complete (if small) model that uses the above “custom annotation” scheme: 26

27

<?xml version="1.0" encoding="UTF-8"?> 28

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" 29

level="3" version="1"> 30

<model> 31

<listOfFunctionDefinitions> 32

<functionDefinition id="normal"> 33

<annotation> 34

<distribution xmlns="http://sbml.org/annotations/distribution" 35

definition="http://en.wikipedia.org/wiki/Normal_distribution"/> 36

</annotation> 37

<math xmlns="http://www.w3.org/1998/Math/MathML"> 38

<lambda> 39

<bvar> 40

<ci> mean </ci> 41

</bvar> 42

<bvar> 43

Section Contents Page 29 of 44

Section 4. Interaction with other packages

<ci> stdev </ci> 1

</bvar> 2

<notanumber/> 3

</lambda> 4

</math> 5

</functionDefinition> 6

</listOfFunctionDefinitions> 7

<listOfParameters> 8

<parameter id="x" constant="true"/> 9

</listOfParameters> 10

<listOfInitialAssignments> 11

<initialAssignment symbol="x"> 12

<math xmlns="http://www.w3.org/1998/Math/MathML"> 13

<apply> 14

<ci> normal </ci> 15

<cn> 3 </cn> 16

<cn> 0.2 </cn> 17

</apply> 18

</math> 19

</initialAssignment> 20

</listOfInitialAssignments> 21

</model> 22

</sbml> 23
24

And here is the same model, using the csymbol defined in distrib: 25

26

<?xml version="1.0" encoding="UTF-8"?> 27

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core" 28

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 29

level="3" version="2" distrib:required="true"> 30

<model> 31

<listOfParameters> 32

<parameter id="x" constant="true"/> 33

</listOfParameters> 34

<listOfInitialAssignments> 35

<initialAssignment symbol="x"> 36

<math xmlns="http://www.w3.org/1998/Math/MathML"> 37

<apply> 38

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal" 39

encoding="text"> normal </csymbol> 40

<cn type="integer"> 3 </cn> 41

<cn> 0.2 </cn> 42

</apply> 43

</math> 44

</initialAssignment> 45

</listOfInitialAssignments> 46

</model> 47

</sbml> 48
49

4.2 The Arrays package 50

This package is dependent on no other package, but might rely on the Arrays package to provide vector and matrix 51

structures if those are desired/used. Note that currently, the only case where arrays could be used is when an 52

UncertParameter of type “externalParameter” is defined that requires array input or output. 53

4.3 SBML Level 3 Version 2 54

This package may be used with either SBML Level 3 Version 1 Core, or SBML Level 3 Version 2 Core, and no construct 55

in this package changes as a result: the addition of id and name to DistribBase means that the addition of those 56

attributes to SBase in SBML Level 3 Version 2 Core is redundant. 57

Another change between SBML Level 3 Version 1 and Version 2 is that in Version 2, core elements and core Math 58

Section Contents Page 30 of 44

Section 4. Interaction with other packages

may refer to package idswith mathematical meaning. However, Distributions UncertParameter elements do not 1

have mathematical meaning, and may not be used in this fashion. Instead, the var attribute should be used to 2

connect the element to a core Parameter, instead of using the value attribute. This approach has the advantage of 3

working both in Version 1 and Version 2 of SBML Core. 4

4.4 Other SBML Level 3 Packages 5

This package may be used seamlessly with other SBML Level 3 packages that have Math elements, and/or that have 6

elements with mathematical meaning. It would be possible, for example, to use a distrib csymbol in the Math of a 7

’Qualitative Models’ <functionTerm>. In this example, the functionTerm returns true when a quantity ’A’ is greater 8

than or equal to a value drawn from a uniform distribution: 9

10

<qual:transition qual:id="tr_B"> 11

[...] 12

<qual:listOfFunctionTerms> 13

<qual:functionTerm qual:resultLevel="1"> 14

<math xmlns="http://www.w3.org/1998/Math/MathML"> 15

<!-- A >= uniform(0,2)--> 16

<apply> 17

<geq/> 18

<ci>A</ci> 19

<apply> 20

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/uniform" 21

encoding="text"> uniform </csymbol> 22

<cn type="integer"> 0 </cn> 23

<cn type="integer"> 2 </cn> 24

</apply> 25

</apply> 26

</math> 27

</qual:functionTerm> 28

<qual:defaultTerm qual:resultLevel="0"/> 29

</qual:listOfFunctionTerms> 30

</qual:transition> 31
32

A Qualitative Species could also be given a child Uncertainty. Here, the value of A is described as coming from a 33

poisson distribution: 34

35

<qual:qualitativeSpecies qual:compartment="cytosol" qual:constant="false" 36

qual:id="A" qual:maxLevel="6"> 37

<distrib:listOfUncertainties> 38

<distrib:uncertainty> 39

<distrib:uncertParameter distrib:type="distribution"> 40

<math xmlns="http://www.w3.org/1998/Math/MathML"> 41

<apply> 42

<csymbol definitionURL="http://www.sbml.org/sbml/symbols/distrib/poisson" 43

encoding="text"> poisson </csymbol> 44

<cn type="integer"> 0 </cn> 45

</apply> 46

</math> 47

</distrib:uncertParameter> 48

</distrib:uncertainty> 49

</distrib:listOfUncertainties> 50

</qual:qualitativeSpecies> 51
52

These constructs can be used in identical ways in other SBML Level 3 packages. 53

Section Contents Page 31 of 44

5 Use-cases and examples 1

The following examples are more fleshed out than the ones in the main text, and/or illustrate features of this package 2

that were not previously illustrated. 3

5.1 Sampling from a distribution: PK/PD Model 4

This is a very straightforward use of a log normal distribution. The key point to note is that a value is sampled from 5

the distribution and assigned to a variable when it is invoked in the initialAssignment elements in this example. 6

Later use of the variable does not result in re-sampling from the distribution. This is consistent with current SBML 7

semantics. 8

9

<?xml version="1.0" encoding="UTF-8"?> 10

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" 11

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 12

level="3" version="1" distrib:required="true"> 13

<model> 14

<listOfCompartments> 15

<compartment id="central" size="0" constant="true"/> 16

<compartment id="gut" size="0" constant="true"/> 17

</listOfCompartments> 18

<listOfSpecies> 19

<species id="Qc" compartment="central" initialAmount="1" hasOnlySubstanceUnits="true" 20

boundaryCondition="false" constant="false"/> 21

<species id="Qg" compartment="gut" initialAmount="1" hasOnlySubstanceUnits="true" 22

boundaryCondition="false" constant="false"/> 23

</listOfSpecies> 24

<listOfParameters> 25

<parameter id="ka" constant="true"/> 26

<parameter id="ke" constant="true"/> 27

<parameter id="Cc" constant="false"/> 28

<parameter id="Cc_obs" constant="false"/> 29

</listOfParameters> 30

<listOfInitialAssignments> 31

<initialAssignment symbol="central"> 32

<math xmlns="http://www.w3.org/1998/Math/MathML"> 33

<apply> 34

<csymbol encoding="text" 35

definitionURL="http://www.sbml.org/sbml/symbols/distrib/lognormal"> lognormal 36

</csymbol> 37

<cn> 0.5 </cn> 38

<cn> 0.1 </cn> 39

</apply> 40

</math> 41

</initialAssignment> 42

<initialAssignment symbol="ka"> 43

<math xmlns="http://www.w3.org/1998/Math/MathML"> 44

<apply> 45

<csymbol encoding="text" 46

definitionURL="http://www.sbml.org/sbml/symbols/distrib/lognormal"> lognormal 47

</csymbol> 48

<cn> 0.5 </cn> 49

<cn> 0.1 </cn> 50

</apply> 51

</math> 52

</initialAssignment> 53

<initialAssignment symbol="ke"> 54

<math xmlns="http://www.w3.org/1998/Math/MathML"> 55

<apply> 56

<csymbol encoding="text" 57

definitionURL="http://www.sbml.org/sbml/symbols/distrib/lognormal"> lognormal 58

</csymbol> 59

Section Contents Page 32 of 44

Section 5. Use-cases and examples

<cn> 0.5 </cn> 1

<cn> 0.1 </cn> 2

</apply> 3

</math> 4

</initialAssignment> 5

</listOfInitialAssignments> 6

<listOfRules> 7

<assignmentRule variable="Cc"> 8

<math xmlns="http://www.w3.org/1998/Math/MathML"> 9

<apply> 10

<divide/> 11

<ci> Qc </ci> 12

<ci> central </ci> 13

</apply> 14

</math> 15

</assignmentRule> 16

<assignmentRule variable="Cc_obs"> 17

<math xmlns="http://www.w3.org/1998/Math/MathML"> 18

<apply> 19

<plus/> 20

<ci> Cc </ci> 21

<cn type="integer"> 1 </cn> 22

</apply> 23

</math> 24

</assignmentRule> 25

</listOfRules> 26

<listOfReactions> 27

<reaction id="absorption" reversible="false" fast="false"> 28

<listOfReactants> 29

<speciesReference species="Qg" stoichiometry="1" constant="true"/> 30

</listOfReactants> 31

<listOfProducts> 32

<speciesReference species="Qc" stoichiometry="1" constant="true"/> 33

</listOfProducts> 34

<kineticLaw> 35

<math xmlns="http://www.w3.org/1998/Math/MathML"> 36

<apply> 37

<times/> 38

<ci> ka </ci> 39

<ci> Qg </ci> 40

</apply> 41

</math> 42

</kineticLaw> 43

</reaction> 44

<reaction id="excretion" reversible="false" fast="false"> 45

<listOfReactants> 46

<speciesReference species="Qc" stoichiometry="1" constant="true"/> 47

</listOfReactants> 48

<kineticLaw> 49

<math xmlns="http://www.w3.org/1998/Math/MathML"> 50

<apply> 51

<divide/> 52

<apply> 53

<times/> 54

<ci> ke </ci> 55

<ci> Qc </ci> 56

</apply> 57

<ci> central </ci> 58

</apply> 59

</math> 60

</kineticLaw> 61

</reaction> 62

</listOfReactions> 63

</model> 64

</sbml> 65
66

Section Contents Page 33 of 44

Section 5. Use-cases and examples

5.2 Multiple uses of distributions 1

In this example, a normal csymbol is used in an initial assignment, and mean and standardDeviation elements 2

are used to denote the uncertainty in the parameter V, and the uncertainty in the initial assignment to V. Note that 3

strictly speaking, one could assume that the uncertainty in the parameter itself was identical to the uncertainty in 4

its initial assignment; both are given here by way of illustration. 5

6

<?xml version="1.0" encoding="UTF-8"?> 7

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" 8

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 9

level="3" version="1" distrib:required="true"> 10

<model> 11

<listOfParameters> 12

<parameter id="V" constant="true"> 13

<distrib:listOfUncertainties> 14

<distrib:uncertainty> 15

<distrib:uncertParameter distrib:var="V_pop" distrib:type="mean"/> 16

<distrib:uncertParameter distrib:var="V_omega" distrib:type="standardDeviation"/> 17

</distrib:uncertainty> 18

</distrib:listOfUncertainties> 19

</parameter> 20

<parameter id="V_pop" value="100" constant="true"/> 21

<parameter id="V_omega" value="0.25" constant="true"/> 22

</listOfParameters> 23

<listOfInitialAssignments> 24

<initialAssignment symbol="V"> 25

<math xmlns="http://www.w3.org/1998/Math/MathML"> 26

<apply> 27

<csymbol encoding="text" 28

definitionURL="http://www.sbml.org/sbml/symbols/distrib/normal"> normal 29

</csymbol> 30

<ci> V_pop </ci> 31

<ci> V_omega </ci> 32

</apply> 33

</math> 34

<distrib:listOfUncertainties> 35

<distrib:uncertainty> 36

<distrib:uncertParameter distrib:var="V_pop" distrib:type="mean"/> 37

<distrib:uncertParameter distrib:var="V_omega" distrib:type="standardDeviation"/> 38

</distrib:uncertainty> 39

</distrib:listOfUncertainties> 40

</initialAssignment> 41

</listOfInitialAssignments> 42

</model> 43

</sbml> 44
45

5.3 Defining confidence intervals 46

In this example, several Parameter elements are given confidence intervals, and several Species are given standard 47

deviations. Each indicates the modeler’s assessment of the precision of the estimated given values for those 48

elements. 49

50

<?xml version="1.0" encoding="UTF-8"?> 51

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1" 52

xmlns:distrib="http://www.sbml.org/sbml/level3/version1/distrib/version1" 53

distrib:required="true"> 54

<model> 55

<listOfCompartments> 56

<compartment id="C" spatialDimensions="3" size="1" constant="true"/> 57

</listOfCompartments> 58

<listOfSpecies> 59

<species id="S1" compartment="C" initialAmount="5.2" hasOnlySubstanceUnits="false" 60

Section Contents Page 34 of 44

Section 5. Use-cases and examples

boundaryCondition="false" constant="false"> 1

<distrib:listOfUncertainties> 2

<distrib:uncertainty> 3

<distrib:uncertParameter distrib:value="0.3" distrib:type="standardDeviation"/> 4

</distrib:uncertainty> 5

</distrib:listOfUncertainties> 6

</species> 7

<species id="S2" compartment="C" initialAmount="8.7" hasOnlySubstanceUnits="false" 8

boundaryCondition="false" constant="false"> 9

<distrib:listOfUncertainties> 10

<distrib:uncertainty> 11

<distrib:uncertParameter distrib:value="0.01" distrib:type="standardDeviation"/> 12

</distrib:uncertainty> 13

</distrib:listOfUncertainties> 14

</species> 15

<species id="S3" compartment="C" initialAmount="1102" hasOnlySubstanceUnits="false" 16

boundaryCondition="false" constant="false"> 17

<distrib:listOfUncertainties> 18

<distrib:uncertainty> 19

<distrib:uncertParameter distrib:value="53" distrib:type="standardDeviation"/> 20

</distrib:uncertainty> 21

</distrib:listOfUncertainties> 22

</species> 23

<species id="S4" compartment="C" initialAmount="0.026" hasOnlySubstanceUnits="false" 24

boundaryCondition="false" constant="false"> 25

<distrib:listOfUncertainties> 26

<distrib:uncertainty> 27

<distrib:uncertParameter distrib:value="0.004" distrib:type="standardDeviation"/> 28

</distrib:uncertainty> 29

</distrib:listOfUncertainties> 30

</species> 31

</listOfSpecies> 32

<listOfParameters> 33

<parameter id="P1" value="5.13" constant="true"> 34

<distrib:listOfUncertainties> 35

<distrib:uncertainty> 36

<distrib:uncertSpan distrib:type="confidenceInterval" 37

distrib:valueLower="5" distrib:valueUpper="5.32"/> 38

</distrib:uncertainty> 39

</distrib:listOfUncertainties> 40

</parameter> 41

<parameter id="P2" value="15" constant="true"> 42

<distrib:listOfUncertainties> 43

<distrib:uncertainty> 44

<distrib:uncertSpan distrib:type="confidenceInterval" 45

distrib:valueLower="10.22" distrib:valueUpper="15.02"/> 46

</distrib:uncertainty> 47

</distrib:listOfUncertainties> 48

</parameter> 49

<parameter id="P3" value="0.003" constant="true"> 50

<distrib:listOfUncertainties> 51

<distrib:uncertainty> 52

<distrib:uncertSpan distrib:type="confidenceInterval" 53

distrib:valueLower="-0.001" distrib:valueUpper="0.0041"/> 54

</distrib:uncertainty> 55

</distrib:listOfUncertainties> 56

</parameter> 57

<parameter id="P4" value="0.34" constant="true"> 58

<distrib:listOfUncertainties> 59

<distrib:uncertainty> 60

<distrib:uncertSpan distrib:type="confidenceInterval" 61

distrib:valueLower="0.22" distrib:valueUpper="0.51"/> 62

</distrib:uncertainty> 63

</distrib:listOfUncertainties> 64

</parameter> 65

<parameter id="P5" value="92" constant="true"> 66

Section Contents Page 35 of 44

Section 5. Use-cases and examples

<distrib:listOfUncertainties> 1

<distrib:uncertainty> 2

<distrib:uncertSpan distrib:type="confidenceInterval" 3

distrib:valueLower="90" distrib:valueUpper="99"/> 4

</distrib:uncertainty> 5

</distrib:listOfUncertainties> 6

</parameter> 7

</listOfParameters> 8

</model> 9

</sbml> 10
11

Section Contents Page 36 of 44

A Validation of SBML documents 1

A.1 Validation and consistency rules 2

This section summarizes all the conditions that must (or in some cases, at least should) be true of an SBML Level 3 3

Version 1 model that uses the Distributions package. We use the same conventions as are used in the SBML Level 3 4

Version 1 Core specification document. In particular, there are different degrees of rule strictness. Formally, the 5

differences are expressed in the statement of a rule: either a rule states that a condition must be true, or a rule 6

states that it should be true. Rules of the former kind are strict SBML validation rules—a model encoded in SBML 7

must conform to all of them in order to be considered valid. Rules of the latter kind are consistency rules. To help 8

highlight these differences, we use the following three symbols next to the rule numbers: 9

2X A checked box indicates a requirement for SBML conformance. If a model does not follow this rule, it does not 10

conform to the Distributions package specification. (Mnemonic intention behind the choice of symbol: “This 11

must be checked.”) 12

s A triangle indicates a recommendation for model consistency. If a model does not follow this rule, it is not 13

considered strictly invalid as far as the Distributions package specification is concerned; however, it indicates 14

that the model contains a physical or conceptual inconsistency. (Mnemonic intention behind the choice of 15

symbol: “This is a cause for warning.”) 16

F A star indicates a strong recommendation for good modeling practice. This rule is not strictly a matter of 17

SBML encoding, but the recommendation comes from logical reasoning. As in the previous case, if a model 18

does not follow this rule, it is not strictly considered an invalid SBML encoding. (Mnemonic intention behind 19

the choice of symbol: “You’re a star if you heed this.”) 20

The validation rules listed in the following subsections are all stated or implied in the rest of this specification 21

document. They are enumerated here for convenience. Unless explicitly stated, all validation rules concern objects 22

and attributes specifically defined in the Distributions package package. 23

For convenience and brevity, we use the shorthand “distrib:x” to stand for an attribute or element name x in+ 24

the namespace for the Distributions package package, using the namespace prefix distrib. In reality, the prefix 25

string may be different from the literal “distrib” used here (and indeed, it can be any valid XML namespace prefix 26

that the modeler or software chooses). We use “distrib:x” because it is shorter than to write a full explanation 27

everywhere we refer to an attribute or element in the Distributions package namespace. 28

Attributes from this package are listed in these rules as having the “distrib:” prefix, but as is convention for SBML 29

packages, this prefix is optional. 30

General rules about this package 31

distrib-10101 2X To conform to the Distributions package specification for SBML Level 3 Version 1, an SBML doc- 32

ument must declare “http://www.sbml.org/sbml/level3/version1/distrib/version1” 33

as the XMLNamespace to use for elements of this package. (Reference: SBML Level 3 Specifi- 34

cation for Distributions, Version 1 Section 3.2 on page 10.) 35

distrib-10102 2X Wherever they appear in an SBML document, elements and attributes from the Distributions 36

package must use “http://www.sbml.org/sbml/level3/version1/distrib/version1” as 37

the namespace, declaring so either explicitly or implicitly. (Reference: SBML Level 3 Specifica- 38

tion for Distributions, Version 1 Section 3.2 on page 10.) 39

General rules for MathML content 40

distrib-10205 2X (Extends validation rule #10205 in the SBML Level 3 Core specification.) The allowed values 41

for the attribute definitionURL on a csymbol are extended to additionally allow 42

Section Contents Page 37 of 44

Section A. Validation of SBML documents

“http://www.sbml.org/sbml/symbols/distrib/normal”, 1

“http://www.sbml.org/sbml/symbols/distrib/uniform”, 2

“http://www.sbml.org/sbml/symbols/distrib/bernoulli”, 3

“http://www.sbml.org/sbml/symbols/distrib/binomial”, 4

“http://www.sbml.org/sbml/symbols/distrib/cauchy”, 5

“http://www.sbml.org/sbml/symbols/distrib/chisquare”, 6

“http://www.sbml.org/sbml/symbols/distrib/exponential”, 7

“http://www.sbml.org/sbml/symbols/distrib/gamma”, 8

“http://www.sbml.org/sbml/symbols/distrib/laplace”, 9

“http://www.sbml.org/sbml/symbols/distrib/lognormal”, 10

“http://www.sbml.org/sbml/symbols/distrib/poisson”, and 11

“http://www.sbml.org/sbml/symbols/distrib/rayleigh”. (Reference: SBML Level 3 Spec- 12

ification for Distributions, Version 1, Section 3.5 on page 12) 13

distrib-10250 2X Any MathML csymbol element with a definitionURL of 14

“http://www.sbml.org/sbml/symbols/distrib/normal”, 15

“http://www.sbml.org/sbml/symbols/distrib/binomial”, 16

“http://www.sbml.org/sbml/symbols/distrib/gamma”, or 17

“http://www.sbml.org/sbml/symbols/distrib/lognormal” must have exactly two or four 18

children. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on 19

page 12) 20

distrib-10251 2X Any MathML csymbol element with a definitionURL of 21

“http://www.sbml.org/sbml/symbols/distrib/uniform” must have exactly two children. 22

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on page 12) 23

distrib-10252 2X Any MathML csymbol element with a definitionURL of 24

“http://www.sbml.org/sbml/symbols/distrib/bernoulli”, must have exactly one child. 25

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on page 12) 26

distrib-10253 2X Any MathML csymbol element with a definitionURL of 27

“http://www.sbml.org/sbml/symbols/distrib/cauchy” 28

or “http://www.sbml.org/sbml/symbols/distrib/laplace” must have exactly one, two, 29

or four children. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec- 30

tion 3.5 on page 12) 31

distrib-10254 2X Any MathML csymbol element with a definitionURL of 32

“http://www.sbml.org/sbml/symbols/distrib/chisquare”, 33

“http://www.sbml.org/sbml/symbols/distrib/exponential”, 34

“http://www.sbml.org/sbml/symbols/distrib/poisson”, or 35

“http://www.sbml.org/sbml/symbols/distrib/rayleigh” must have exactly one or three 36

children. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.5 on 37

page 12) 38

General rules about identifiers 39

distrib-10301 2X (Extends validation rule #10301 in the SBML Level 3 Core specification.) The distrib:id at- 40

tribute of every ListOfUncertainties, Uncertainty, UncertParameter, and UncertSpan is added 41

to the general SId namespace of the Model, and must be unique among all core or other 42

package id values also added to the same namespace. (Reference: SBML Level 3 Version 1 43

Core, Section 3.1.7.) 44

distrib-10302 2X The value of a distrib:idmust conform to the syntax of the SBML data type SId (Reference: 45

SBML Level 3 Specification for Distributions, Version 1, Section 3.8 on page 17.) 46

Section Contents Page 38 of 44

Section A. Validation of SBML documents

distrib-10303 2X The value of a distrib:namemust have a value of data type string. (Reference: SBML Level 3 1

Specification for Distributions, Version 1, Section 3.8 on page 17.) 2

Rules for the extended SBML class 3

distrib-20101 2X In all SBML documents using the Distributions package, the SBML object must have the 4

distrib:required attribute. (Reference: SBML Level 3 Version 1 Core, Section 4.1.2.) 5

distrib-20102 2X The value of attribute distrib:required on the SBML object must be of data type boolean. 6

(Reference: SBML Level 3 Version 1 Core, Section 4.1.2.) 7

distrib-20103 2X The value of attribute distrib:required on the SBML object must be set to “true”. (Refer- 8

ence: SBML Level 3 Specification for Distributions, Version 1 Section 3.2 on page 10.) 9

Rules for extended SBase object 10

distrib-20201 2X An SBase object may contain one and only one instance of the ListOfUncertainties element. 11

No other elements from the SBML Level 3 Distributions namespaces are permitted on an 12

SBase object. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec- 13

tion 3.9 on page 17.) 14

distrib-20202 2X Apart from the general notes and annotations subobjects permitted on all SBML objects, a 15

ListOfUncertainties container object may only contain Uncertainty objects. (Reference: SBML 16

Level 3 Specification for Distributions, Version 1, Section 3.9 on page 17.) 17

distrib-20203 2X A ListOfUncertainties object may have the optional SBML Level 3 Core attributes metaid and 18

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on a 19

ListOfUncertainties object. (Reference: SBML Level 3 Specification for Distributions, Version 1, 20

Section 3.9 on page 17.) 21

Rules for UncertParameter object 22

distrib-20301 2X An UncertParameter object may have the optional SBML Level 3 Core attributes metaid and 23

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on an 24

UncertParameter. (Reference: SBML Level 3 Version 1 Core, Section 3.2.) 25

distrib-20302 2X An UncertParameter object may have the optional SBML Level 3 Core subobjects for notes and 26

annotations. No other elements from the SBML Level 3 Core namespaces are permitted on an 27

UncertParameter. (Reference: SBML Level 3 Version 1 Core, Section 3.2.) 28

distrib-20303 2X An UncertParameter object must have the required attribute distrib:type, and may have the 29

optional attributes distrib:id, distrib:name, distrib:value, distrib:var, distrib:- 30

units and distrib:definitionURL. No other attributes from the SBML Level 3 Distributions 31

namespaces are permitted on an UncertParameter object. (Reference: SBML Level 3 Specifica- 32

tion for Distributions, Version 1, Section 3.11 on page 19.) 33

distrib-20304 2X An UncertParameter object may contain one and only one instance of each of the ListOfUncert- 34

Parameters and ASTNode elements. No other elements from the SBML Level 3 Distributions 35

namespaces are permitted on an UncertParameter object. (Reference: SBML Level 3 Specifica- 36

tion for Distributions, Version 1, Section 3.11 on page 19.) 37

distrib-20305 2X The value of the attribute distrib:type of an UncertParameter object may only be a subset 38

of the values allowed in an SBML data type UncertType; that is, the value must be one of the 39

following: “distribution”, “externalParameter”, “coeffientOfVariation”, “kurtosis”, 40

“mean”, “median”, “mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardEr- 41

ror”, or “variance”. (Reference: SBML Level 3 Specification for Distributions, Version 1, 42

Section 3.11 on page 19.) 43

Section Contents Page 39 of 44

Appendix A. Validation of SBML documents

distrib-20306 2X The attribute distrib:value on an UncertParameter must have a value of data type double. 1

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.) 2

distrib-20307 2X The value of the attribute distrib:var of an UncertParameter object must be the identifier 3

of an existing object derived from the SBase class and defined in the enclosing Model object. 4

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.) 5

distrib-20308 2X The value of the attribute distrib:units on an UncertParameter must be taken from the fol- 6

lowing: the identifier of a UnitDefinition object in the enclosing Model, or one of the base units 7

in SBML. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on 8

page 19.) 9

distrib-20309 2X The attribute distrib:definitionURL on an UncertParameter must have a value of data type 10

string. (Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on 11

page 19.) 12

distrib-20310 2X Apart from the general notes and annotations subobjects permitted on all SBML objects, a 13

ListOfUncertParameters container object may only contain UncertParameter objects. (Refer- 14

ence: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.) 15

distrib-20311 2X A ListOfUncertParameters object may have the optional SBML Level 3 Core attributes metaid 16

and sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on 17

a ListOfUncertParameters object. (Reference: SBML Level 3 Specification for Distributions, 18

Version 1, Section 3.11 on page 19.) 19

distrib-20312 2X A ListOfUncertParameters object may have the optional attributes distrib:id and distrib:- 20

name. No other attributes from the SBML Level 3 Distributions namespaces are permitted on 21

an UncertSpan object. (Reference: SBML Level 3 Specification for Distributions, Version 1, 22

Section 3.11 on page 19.) 23

distrib-20350 2X An UncertParameter object may define either the attribute distrib:value or distrib:var, 24

but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec- 25

tion 3.11 on page 19.) 26

distrib-20351 2X An UncertParameter object may define either the attribute distrib:value or distrib:var, 27

but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec- 28

tion 3.11 on page 19.) 29

distrib-20352 2X An UncertParameter object with a type of “coeffientOfVariation”, “kurtosis”, “mean”, 30

“median”, “mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardError”, or 31

“variance” may not define the attribute distrib:definitionURL. (Reference: SBML Level 3 32

Specification for Distributions, Version 1, Section 3.11 on page 19.) 33

distrib-20353 2X An UncertParameter object with a type of “coeffientOfVariation”, “kurtosis”, “mean”, 34

“median”, “mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardError”, or 35

“variance” may not define a child Math or ListOfUncertParameters object. (Reference: SBML 36

Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.) 37

distrib-20354 2X An UncertParameter object with a type of “distribution” may not define the attributes 38

distrib:value or distrib:var. (Reference: SBML Level 3 Specification for Distributions, 39

Version 1, Section 3.11 on page 19.) 40

Rules for Uncertainty object 41

distrib-20401 2X An Uncertainty object may have the optional SBML Level 3 Core attributes metaid and 42

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on 43

an Uncertainty. (Reference: SBML Level 3 Version 1 Core, Section 3.2.) 44

Appendix Contents Page 40 of 44

Section A. Validation of SBML documents

distrib-20402 2X An Uncertainty object may have the optional SBML Level 3 Core subobjects for notes and 1

annotations. No other elements from the SBML Level 3 Core namespaces are permitted on an 2

Uncertainty. (Reference: SBML Level 3 Version 1 Core, Section 3.2.) 3

distrib-20403 2X An Uncertainty object may contain one and only one instance of the ListOfUncertParameters 4

element. No other elements from the SBML Level 3 Distributions namespaces are permitted 5

on an Uncertainty object. (Reference: SBML Level 3 Specification for Distributions, Version 1, 6

Section 3.10 on page 18.) 7

distrib-20404 2X An Uncertainty object may have the optional attributes distrib:id and distrib:name. No 8

other attributes from the SBML Level 3 Distributions namespaces are permitted on an Un- 9

certSpan object. (Reference: SBML Level 3 Specification for Distributions, Version 1, Sec- 10

tion 3.10 on page 18.) 11

distrib-20450 2X An Uncertainty object may have only one or zero UncertParameter children of each of the 12

following types: “distribution”, “coeffientOfVariation”, “kurtosis”, “mean”, “median”, 13

“mode”, “sampleSize”, “skewness”, “standardDeviation”, “standardError”, or “variance”. 14

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.10 on page 18.) 15

distrib-20451 2X An Uncertainty object may have only one or zero UncertSpan children of each of the follow- 16

ing types: “confidenceInterval”, “credibleInterval”, “interquartileRange” or “range”. 17

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.10 on page 18.) 18

Rules for UncertSpan object 19

distrib-20501 2X An UncertSpan object may have the optional SBML Level 3 Core attributes metaid and 20

sboTerm. No other attributes from the SBML Level 3 Core namespaces are permitted on 21

an UncertSpan. (Reference: SBML Level 3 Version 1 Core, Section 3.2.) 22

distrib-20502 2X An UncertSpan object may have the optional SBML Level 3 Core subobjects for notes and 23

annotations. No other elements from the SBML Level 3 Core namespaces are permitted on an 24

UncertSpan. (Reference: SBML Level 3 Version 1 Core, Section 3.2.) 25

distrib-20503 2X An UncertSpan object must have the required attribute distrib:type, and may have the 26

optional attributes distrib:id, distrib:name, distrib:value, distrib:var, distrib:- 27

units and distrib:definitionURL, distrib:varLower, distrib:valueLower, distrib:- 28

varUpper and distrib:valueUpper. No other attributes from the SBML Level 3 Distributions 29

namespaces are permitted on an UncertSpan object. (Reference: SBML Level 3 Specification 30

for Distributions, Version 1, Section 3.12 on page 21.) 31

distrib-20504 2X The value of the attribute distrib:varLower of an UncertSpan object must be the identifier 32

of an existing object derived from the SBase class and defined in the enclosing Model object. 33

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.) 34

distrib-20505 2X The attribute distrib:valueLower on an UncertSpan must have a value of data type double. 35

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.) 36

distrib-20506 2X The value of the attribute distrib:varUpper of an UncertSpan object must be the identifier 37

of an existing object derived from the SBase class and defined in the enclosing Model object. 38

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.) 39

distrib-20507 2X The attribute distrib:valueUpper on an UncertSpan must have a value of data type double. 40

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.12 on page 21.) 41

distrib-20550 2X An UncertSpan object may define either the attribute distrib:valueLower or distrib:- 42

varLower, but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1, 43

Section 3.11 on page 19.) 44

Section Contents Page 41 of 44

Appendix A. Validation of SBML documents

distrib-20551 2X An UncertSpan object may define either the attribute distrib:valueUpper or distrib:- 1

varUpper, but not both. (Reference: SBML Level 3 Specification for Distributions, Version 1, 2

Section 3.11 on page 19.) 3

distrib-20552 2X The value of the attribute distrib:type of an UncertSpan object must be a subset of the 4

allowed values of SBML data type UncertType, that is, the value must be one of the fol- 5

lowing: “externalParameter”, “confidenceInterval”, “credibleInterval”, “interquar- 6

tileRange” or “range”. (Reference: SBML Level 3 Specification for Distributions, Version 1, 7

Section 3.11 on page 19.) 8

distrib-20553 2X An UncertSpan object with a type of “confidenceInterval”, “credibleInterval”, “inter- 9

quartileRange” or “range” may not define the attributes distrib:value, distrib:var, or 10

distrib:definitionURL. (Reference: SBML Level 3 Specification for Distributions, Version 1, 11

Section 3.11 on page 19.) 12

distrib-20554 2X An UncertSpan object with a type of “confidenceInterval”, “credibleInterval”, “inter- 13

quartileRange” or “range” may not define a child Math or ListOfUncertParameters object. 14

(Reference: SBML Level 3 Specification for Distributions, Version 1, Section 3.11 on page 19.) 15

Appendix Contents Page 42 of 44

B Acknowledgments 1

Much of the initial concrete work leading to this proposal document was carried out at the Statistical Models 2

Workshop in Hinxton in 2011, which was organized by Nicolas Le Novère. A list of participants and recordings of the 3

discussion is available from http://sbml.org/Events/Other_Events/statistical_models_workshop_2011. 4

Before that a lot of the ground work was carried out by Darren Wilkinson who led the discussion on distrib at the 5

Seattle SBML Hackathon and before that Colin Gillespie who wrote an initial proposal back in 2005. The authors 6

would also like to thank the participants of the distrib sessions during various HARMONY and COMBINE meetings 7

for their excellent contributions in helping revising this proposal; Sarah Keating, Maciej Swat, Nicolas Le Novère, 8

and Matthias König for useful discussions, corrections and review comments; and Mike Hucka for LATEX advice, text 9

editing, and the template upon which this document is based. 10

Appendix Contents Page 43 of 44

References 1

Biron, P. V. and Malhotra, A. (2000). XML Schema part 2: Datatypes (W3C candidate recommendation 24 October 2

2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/. 3

Eriksson, H.-E. and Penker, M. (1998). UML Toolkit. John Wiley & Sons, New York. 4

Fallside, D. C. (2000). XML Schema part 0: Primer (W3C candidate recommendation 24 October 2000). Available 5

via the World Wide Web at http://www.w3.org/TR/xmlschema-0/. 6

Oestereich, B. (1999). Developing Software with UML: Object-Oriented Analysis and Design in Practice. Addison- 7

Wesley Publishing Company. 8

Swat, M., Grenon, P., and S.M.Wimalaratne (2016). Probonto - ontology and knowledge base of probability 9

distributions. Bioinformatics, 17(32):2719–2721. 10

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2000). XML Schema part 1: Structures (W3C 11

candidate recommendation 24 October 2000). Available online via the World Wide Web at the address http: 12

//www.w3.org/TR/xmlschema-1/. 13

Appendix Contents Page 44 of 44

	Systems Biology Markup Language (SBML) Level 3 Package: Distributions, Version 1, Release 1
	JIB-2020-0018_proof_Old.pdf
	Systems Biology Markup Language (SBML) Level 3 Package: Distributions, Version 1, Release 1

