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Abstract 
Genome-scale metabolic models (GEMs) and other constraint-based models (CBMs) play a 
pivotal role in understanding biological phenotypes and advancing research in areas like 
metabolic engineering, human disease modelling, drug discovery, and personalized medicine. 
Despite their growing application, a significant challenge remains in ensuring the 
reproducibility of GEMs, primarily due to inconsistent reporting and inadequate model 
documentation of model results. Addressing this gap, we introduce FROG analysis, a 
community-driven initiative aimed at standardizing reproducibility assessments of CBMs and 
GEMs. The FROG framework encompasses four key analyses—Flux variability, Reaction 
deletion, Objective function, and Gene deletion—to produce standardized, numerically 
reproducible FROG reports. These reports serve as reference datasets, enabling model 
evaluators, curators, and independent researchers to verify the reproducibility of GEMs 
systematically. 
 
BioModels, a leading repository of systems biology models, has integrated FROG analysis into 
its curation workflow, enhancing the reproducibility and reusability of submitted GEMs. In 
our study evaluating 65 GEM submissions from the community, approximately 40% 
reproduced without intervention, 28% requiring minor adjustments, and 32% needing input 
from authors. The standardization introduced by FROG analysis facilitated the detection and 
resolution of issues, ultimately leading to the successful reproduction of all models. By 
establishing a standardized and comprehensive approach to evaluating GEM reproducibility, 
FROG analysis significantly contributes to making CBMs and GEMs more transparent, 
reusable, and reliable for the broader scientific community.  
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Main Article 
Genome-scale metabolic models (GEMs) - the constraint-based models (CBMs) generated 
from a genomic reconstruction of metabolic pathways - are pivotal in the study of biological 
phenotypes (Schellenberger et al., 2011). GEMs and other CBMs have broad applications, 
ranging from understanding microbial, plant, and mammalian metabolism to producing 
chemicals and materials through metabolic engineering (McCloskey et al., 2013; Oberhardt 
et al., 2009). They can also be applied to predict enzyme functions and study host-pathogen 
interactions, microbial interactions in communities (Ibrahim et al., 2021), and cell-cell 
interactions (van der Ark et al., 2017). Recently, GEMs have been used to advance our 
understanding of human diseases, and the scope of GEMs has expanded to include drug 
discovery and personalised medicine (Li et al., 2023; Renz et al., 2020). The CBMs and GEMs 
have evolved over the past four decades as one of the prominent systems biology modelling 
approaches, with an increasing number of studies combining models with high-throughput 
data for efficient predictions (Gu et al., 2019). 
 
However, a substantial challenge with these models is their reproducibility - the ability to 
reproduce the published results - which is often due to insufficient or inconsistent reporting 
of model parameters, constraints, and quantitative predictions (Ravikrishnan and Raman, 
2015). Metabolic flux values from commonly reported flux balance analyses of CBMs are not 
unique solutions and do not suffice for reproducibility assessment. Often, the inadequate 
reporting of objective functions further thwarts verifying whether the publicly shared model 
aligns with the one used in the study, casting doubt on the scientific validity. 
 
A study (Tiwari et al., 2021) highlighted that approximately half of the selected ordinary 
differential equation (ODE) models published in peer-reviewed journals could not be 
reproduced using the information provided in the publications. GEMs are also anticipated to 
face a comparable crisis in reproducibility. About 9% of the ODE models could be empirically 
corrected and reproduced through a trial-and-error approach. Such an approach to correct 
GEMs is impractical, as they are often very large models encompassing thousands of reactions 
and parameters. To address this, the metabolic model test suite MEMOTE was developed as 
a standardised framework to assess GEM quality regarding stoichiometry, mass balance, and 
annotation (Lieven et al., 2020). There are also efforts to standardise GEMs reconstruction 
(Anton et al., 2023). However, these initiatives didn’t address the reproducibility of the model 
simulations, urging the scientific community to build upon these foundational efforts. 
 
To address this challenge, we initiated a community effort to standardise the assessment of 
model reproducibility by developing a new framework - FROG analysis. FROG is an ensemble 
of analyses for constraint-based models that generate standardised, numerically reproducible 
reference datasets, termed ‘FROG Reports’.  FROG  encompasses (1) Flux variability, (2) 
Reaction deletion, (3) Objective function,  and (4) Gene deletion analyses (Figure 1). A FROG 
report includes four standardised files: (1) upper and lower flux bounds calculated from the 
flux variability analysis; (2) the vector of objective function values after systematic one-at-a-
time reaction deletion, (3) Objective function value of the optimised CBMs, and (4) objective 
function values vector obtained after each single-gene deletion analysis. Our community 
recommendation includes public sharing of these reports alongside CBMs and GEMs to 
enable verification that the same results can be reproduced using the model.  
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Figure 1: Graphical overview of FROG analysis encompassing (1) Flux variability, (2) Reaction 
deletion, (3) Objective function,  and (4) Gene deletion analyses enable the generation of 
numerically reproducible reference datasets to assess the reproducibility of GEMs. 
 

 
Figure 2: Schematic representation of modellers and curators workflow. Model authors 
submit GEMs and FROG reports to a public repository. This will allow curators to assess 
whether the simulations are numerically reproducible using different tools. A public 
collection of reproducible and reusable GEMs will significantly benefit the wider scientific 
community. 
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The FROG community effort generated several open-source tools based on major GEM 
modelling software, including command-line tools and web interfaces, to run FROG analysis 
and generate reports (see Table 1). These tools have been harmonised and evaluated to 
ensure they generate standardised and comparable FROG reports. These publicly shared 
FROG reports, along with the original models in standard format SBML-FBC (Keating et al., 
2020; Olivier and Bergmann, 2018), can now be used by independent modellers, curators or 
reviewers to autonomously assess the reproducibility of a model by running these 
standardised analyses in the FROG tools. 
 
To facilitate a retrospective reproducibility assessment of previously published models and 
establish a connection between the FROG report and the results presented in manuscripts, 
we developed a reporting framework to generate a “miniFROG report”. This manually created 
data table follows a standardised schema, listing results described in the manuscript and 
corroborating them against the results in the FROG report. Complete specifications for the 
FROG and miniFROG reports are maintained by the community at https://github.com/EBI-
BioModels/frog-specification. 
 
BioModels (Malik-Sheriff et al., 2020), one of the largest repositories of curated biological 
system models, has integrated FROG analysis into its workflow for curating CBMs and GEMs. 
To evaluate this approach,  BioModels received 65 GEM submissions and their associated 
FROG reports from the community (see Supplementary Table 1). Out of these 26 models 
(about 40%) were reproduced without any intervention. For the remaining models, 18 (about 
28%) required minor technical interventions for reproduction. In the case of 21 models 
(around 32%), authors were contacted to either upload the correct version, address SBML 
validity issues, or resolve other technical problems, such as missing report elements. 
Ultimately, all models were successfully reproduced, some with a degree of numerical 
tolerance (see Supplementary Figure 2). FROG reporting allowed the model evaluator to 
detect issues that hindered the reproduction of the results. These issues include 
inconsistencies in metadata and data reporting, the validity of SBML, and discrepancies in 
numerical precision with different constraint solvers. Crucially, the FROG reports allowed 
rapid identification and communication of such problems to model authors, prospectively 
enabling a prompt correction to achieve complete reproducibility of the results for the 
models. Reproduced models are then annotated them with model-level metadata, and 
generated MEMOTE reports as part of the curation process in BioModels (see Supplementary 
Table 1).  
 
The standardised FROG analysis, reports, and tools developed by the community and the 
dedicated model curation in BioModels are crucial in making CBMs and GEMs reproducible 
and reusable. By providing a reproducibility guarantee for  CBMs and GEMs, FROG-based 
curation will significantly enhance their reuse, extension, and integration into new knowledge 
generation pipelines, thus fast-forwarding scientific discovery.  
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Table 1: List of FROG tools 

Tools Environment  

Command-line Tools  

CBMPy Offline FROG curator  
https://doi.org/10.17605/OSF.IO/T6MH3 
 
 

FROG analysis tools for use with CBMPy – 
a Python software for constraint-based 
modelling. 
https://systemsbioinformatics.github.io/cb
mpy  

FBC curation Matlab 

 
https://github.com/RamanLab/fbc_curation_matlab 
 

MATLAB/COBRA helper for FROG analysis 
of FBC models. 
 

FBCModelTests.jl  
 
https://github.com/LCSB-BioCore/FBCModelTests.jl 
 

A Julia package based on the COBREXA.jl 
(COnstraint-Based Reconstruction and 
EXascale Analysis) tool. 
 

FBC curation*  
 
 
https://github.com/matthiaskoenig/fbc_curation 
[REF] 
 
(Not yet fully updated) 

Independent Python Package for FROG 
analysis 
 
Base tool 1: COBRApy (Constraint-Based 
Reconstruction and Analysis in Python) 
Base tool 2:  Cameo (Cameo—Computer 
Aided Metabolic Engineering and 
Optimisation)  
 

Web implementations  

FROG report generator 
 
https://fbc-model-tests.lcsb.uni.lu/ 

A dedicated web implementation of 
FBCModelTests.jl Julia package 

CBMPy Web FROG curator 
https://osf.io/t6mh3/ 

Web implementation of CBMPy Offline 
FROG curation tool   

runFROG* 
 
http://runfrog.de/ 
(Not yet fully updated) 
 

A dedicated web implementation of the 
FBC curation python package based on 
COBRApy and CAMEO 

Fluxer 
 
https://fluxer.umbc.edu/ 
 
(Not yet fully updated - dependent on FBC curation 
python package) 

A web tool for CBM visualisation with 
additional support for FROG analysis 
using the FBC curation python package as 
a backend 
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Supplementary Material 
 
Curation of Constraint-based models (CBMs) / Genome-scale metabolic models (GEMs) in 
BioModels repository.  
BioModels is a leading repository of mathematical models of biological systems, hosting over 
1050 curated models. Over the past 18 years, the primary focus of curation was ODE-based 
kinetic models (Malik-Sheriff et al., 2020). Curation in BioModels is a manual process that 
involves ensuring the model (1) is encoded in a syntactically valid standard format such as 
SBML (Keating et al., 2020), (2)  is reproducible, and (3) is semantically enriched with 
controlled vocabularies such as GO (The Gene Ontology Consortium, 2019), ChEBI (Hastings 
et al., 2016), etc. The curation activities ultimately aim at making the models FAIReR 
(Findable, Accessible, Interoperable, Reusable, and Reproducible), which is extended from 
the originally suggested FAIR principles (Wilkinson et al., 2016). A model author is expected 
to submit an SBML model (as the main file), FROG report (as an additional file), and miniFROG 
(as an additional file) to BioModels. Curators at BioModels will independently try to 
reproduce the FROG report using a tool different from the one used by the modeller. One of 
the FROG test suite tools will be used to verify the reproducibility of the CBMs and GEMs 
submitted. If the results are reproducible, the model will be added to the curated branch of 
BioModels. 

Furthermore, the curator will cross-check the miniFROG report to ensure that the FROG 
report and the results reported in the manuscript are consistent. Model-level semantic 
annotations will also be added to the model following MIRIAM guidelines (Le Novère et al., 
2005). The quality and consistency of the model annotations will be tested using the MEMOTE 
test suite, and the MEMOTE report will be uploaded as an additional file. Supplementary 
Figure 1 summarises the curation process in BioModels—Supplementary Table 1 lists all the 
models submitted to BioModels with an FROG report. Among the 50 submissions, 24 models 
were already curated using FROG. These models are reproducible, and model-level 
annotations were added. 
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Supplementary Figure 1: Workflow for the curation of constraint-based models in BioModels 
using FROG  

 
Supplementary Figure 2: Summary of the models received for the curation and the problems 
resolved during the curation. Most models were reproducible as-is, either automatically or 
with minor technical intervention. In approximately one-third of the models, we had to 
contact authors to upload the correct model version, address SBML validity issues, or fix 
technical issues such as missing parts of reports. Eventually, the majority of the models were 
reproduced perfectly, and around a quarter was reproduced with controllable numeric 
precision issues caused by floating-point round-off inflation, with appropriate notices added 
for the users. 
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Supplementary Table 1: List of GEMs submitted to BioModels for FROG-based curation. 
Curated models are reproduced and annotated with model-level metadata cross-
referencing appropriate ontology terms and submitted to BioModels. Reproduced models 
are awaiting model annotation. 
 

No. Model ID Organism 

Curation 

Status Reference 

1 MODEL8568434338 Mycobacterium tuberculosis Curated 16261191 

2 MODEL1011300000 Vibrio vulnificus Curated 21245845 

3 MODEL1909260003 Homo sapiens Curated 33483502 

4 MODEL1909260004 Homo sapiens Reproduced 10.1038/s41540-020-00165-3 

5 MODEL1909260005 Homo sapiens Curated 10.1038/s41540-020-00165-3 

6 MODEL1909260006 Homo sapiens Curated 33483502 

7 MODEL2201310001 Anaerotignum neopropionicum Curated 10.1186/s12934-022-01841-1 

8 MODEL2203250001 Ustilago maydis Reproduced 10.1101/2022.03.03.482780 

9 MODEL2204040001 Pseudomonas putida Reproduced 31657101 

10 MODEL2204040002 Haemophilus influenzae Curated 35293791 

11 MODEL2204110002 Thermotoga sp. strain RQ7 Reproduced 10.1007/s12010-020-03470-z 

12 MODEL2204150001 Geobacillus icigianus Curated 32635563 

13 MODEL2204180001 Escherichia coli Curated 33672760 

14 MODEL2204190001 Azotobacter vinelandii Reproduced 10.1016/j.mec.2020.e00132 

15 MODEL2204190002 Geobacter metallireducens Curated 24762737 

16 MODEL2204190003 Rhodotorula toruloides Curated 31720216 

17 MODEL2204190004 Issatchenkia orientalis Curated 33134082 

18 MODEL2204190005 Rhodotorula toruloides Curated 31720216 

19 MODEL2204200002 Phaeodactylum tricornutum Reproduced 10.1371/journal.pone.0155038 

20 MODEL2204200003 Clostridium ljungdahlii Reproduced 10.1371/journal.pcbi.1006848 

21 MODEL2204260001 Saccharomyces cerevisiae Reproduced 10.3390/pr8091195 

22 MODEL2204270001 Nitrosomonas europaea Reproduced 10.1371/journal.pcbi.1009828 

23 MODEL2204280001 Homo sapiens Reproduced 10.1126/scisignal.aaz1482 

24 MODEL2204280003 Saccharomyces cerevisiae Reproduced 31395883 

25 MODEL2204300001 Unknown Reproduced 33398099 

26 MODEL2204300002 Rothia kefirresidentii Reproduced 10.1038/s41564-020-00816-5 

27 MODEL2205020001 Streptococcus pneumoniae Curated 31293525 

28 MODEL2205020002 Xylella fastidiosa Curated 10.1007/978-3-031-17024-9_8 
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29 MODEL2205040001 Quercus suber Reproduced 10.1101/2021.03.09.434537 

30 MODEL2205040002 Quercus suber Reproduced 10.1101/2021.03.09.434537 

31 MODEL2205040003 Quercus suber Reproduced 10.1101/2021.03.09.434537 

32 MODEL2205040004 Quercus suber Reproduced 10.1101/2021.03.09.434537 

33 MODEL2205040005 Quercus suber Reproduced 10.1101/2021.03.09.434537 

34 MODEL2205060002 Clostridium difficile Curated 34609164 

35 MODEL2205110002 Homo sapiens Reproduced 10.1073/pnas.1713050114 

36 MODEL2210190001 Lacticaseibacillus paracasei Curated 36476869 

37 MODEL2210190002 Lacticaseibacillus casei Curated 36476869 

38 MODEL2210190003 Lactobacillus casei Reproduced 36476869 

39 MODEL2210190004 Limosilactobacillus fermentum Curated 36476869 

40 MODEL2210190006 Lactobacillus plantarum Curated 36476869 

41 MODEL2210190007 Lactobacillus plantarum Curated 36476869 

42 MODEL2210190008 Ligilactobacillus salivarius Curated 36476869 

43 MODEL2210190009 

Lactococcus lactis subsp. 

cremoris Curated 36476869 

44 MODEL2210190012 

Leuconostoc mesenteroides 

subsp. mesenteroides Curated 36476869 

45 MODEL2211290001 

Methanothermobacter 

thermautotrophicus Curated 10.1016/j.isci.2023.108016 

46 MODEL2211290001 

Methanothermobacter 

thermautotrophicus Reproduced 10.1016/j.isci.2023.108016 

47 MODEL2211290002 

Methanothermobacter 

thermautotrophicus Curated 10.1016/j.isci.2023.108016 

48 MODEL2211290002 

Methanothermobacter 

thermautotrophicus Reproduced 10.1016/j.isci.2023.108016 

49 MODEL2211290003 

Methanothermobacter 

marburgensis Curated 10.1016/j.isci.2023.108016 

50 MODEL2211290003 

Methanothermobacter 

marburgensis Reproduced 10.1016/j.isci.2023.108016 

51 MODEL2202240001 SARS-CoV-2 Reproduced 10.1371/journal.pcbi.1010903 

52 MODEL2205090001 Pseudomonas aeruginosa Reproduced 36765199 

53 MODEL2304270003 Corynebacterium striatum Reproduced 10.3389/fbinf.2023.1214074 

54 MODEL2304270004 Corynebacterium striatum Reproduced 10.3389/fbinf.2023.1214074 

55 MODEL2304270001 Corynebacterium striatum Reproduced 10.3389/fbinf.2023.1214074 

56 MODEL2304270002 Corynebacterium striatum Reproduced 10.3389/fbinf.2023.1214074 

57 MODEL2304270005 Corynebacterium striatum Reproduced 10.3389/fbinf.2023.1214074 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.614797doi: bioRxiv preprint 

https://www.ebi.ac.uk/biomodels/MODEL2205040001
https://www.ebi.ac.uk/biomodels/MODEL2205040002
https://www.ebi.ac.uk/biomodels/MODEL2205040003
https://www.ebi.ac.uk/biomodels/MODEL2205040004
https://www.ebi.ac.uk/biomodels/MODEL2205040005
https://www.ebi.ac.uk/biomodels/MODEL2205060002
https://www.ebi.ac.uk/biomodels/MODEL2205110002
https://www.ebi.ac.uk/biomodels/MODEL2210190001
https://www.ebi.ac.uk/biomodels/MODEL2210190002
https://www.ebi.ac.uk/biomodels/MODEL2210190003
https://www.ebi.ac.uk/biomodels/MODEL2210190004
https://www.ebi.ac.uk/biomodels/MODEL2210190006
https://www.ebi.ac.uk/biomodels/MODEL2210190007
https://www.ebi.ac.uk/biomodels/MODEL2210190008
https://www.ebi.ac.uk/biomodels/MODEL2210190009
https://www.ebi.ac.uk/biomodels/MODEL2210190012
https://www.ebi.ac.uk/biomodels/MODEL2211290001
https://www.ebi.ac.uk/biomodels/MODEL2211290001
https://www.ebi.ac.uk/biomodels/MODEL2211290002
https://www.ebi.ac.uk/biomodels/MODEL2211290002
https://www.ebi.ac.uk/biomodels/MODEL2211290003
https://www.ebi.ac.uk/biomodels/MODEL2211290003
https://www.ebi.ac.uk/biomodels/MODEL2202240001
https://www.ebi.ac.uk/biomodels/MODEL2205090001
https://www.ebi.ac.uk/biomodels/MODEL2304270003
https://www.ebi.ac.uk/biomodels/MODEL2304270004
https://www.ebi.ac.uk/biomodels/MODEL2304270001
https://www.ebi.ac.uk/biomodels/MODEL2304270002
https://www.ebi.ac.uk/biomodels/MODEL2304270005
https://doi.org/10.1101/2024.09.24.614797
http://creativecommons.org/licenses/by/4.0/


FROG Analysis 

58 MODEL2012220003 Dolosigranulum pigrum Reproduced 10.3390/metabo11040232 

59 MODEL2102050001 Corynebacterium glutamicum Reproduced 10.3389/fmicb.2021.750206 

60 MODEL2110010001 Corynebacterium glutamicum Reproduced 10.3389/fmicb.2021.750206 

61 MODEL2310240001 Rothia mucilaginosa Reproduced 10.1101/2023.11.20.567620v1 

62 MODEL2404170001 Midichloria mitochondrii Reproduced 10.1101/2024.04.22.590557 

63 MODEL2404170002 Rickettsia helvetica Reproduced 10.1101/2024.04.22.590557 

64 MODEL2404250001 Candida auris Reproduced 10.1093/femsyr/foad045 

65 MODEL2404250002 Candida parapsilosis Reproduced 10.3390/genes13020303 
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