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Enzymatic features of the glucose metabolism in tumor
cells
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Glucose metabolism in tumor cells –
an overview

Glucose is a treasured metabolic substrate for all

human cells and is utilized for numerous metabolic

functions (Fig. 1).

1 Formation and degradation of glycogen serves as a

means of internal glucose buffering.

2 The synthesis of ribose phosphates along the oxida-

tive (OPPPW) and non-oxidative pentose phosphate

pathway (NOPPPW) is essential for the synthesis of
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Many tumor types exhibit an impaired Pasteur effect, i.e. despite the pres-

ence of oxygen, glucose is consumed at an extraordinarily high rate com-

pared with the tissue from which they originate – the so-called ‘Warburg

effect’. Glucose has to serve as the source for a diverse array of cellular

functions, including energy production, synthesis of nucleotides and lipids,

membrane synthesis and generation of redox equivalents for antioxidative

defense. Tumor cells acquire specific enzyme-regulatory mechanisms to

direct the main flux of glucose carbons to those pathways most urgently

required under challenging external conditions such as varying substrate

availability, presence of anti-cancer drugs or different phases of the cell

cycle. In this review we summarize the currently available information on

tumor-specific expression, activity and kinetic properties of enzymes

involved in the main pathways of glucose metabolism with due regard to

the explanation of the regulatory basis and physiological significance of the

Warburg effect. We conclude that, besides the expression level of the meta-

bolic enzymes involved in the glucose metabolism of tumor cells, the

unique tumor-specific pattern of isozymes and accompanying changes in

the metabolic regulation below the translation level enable tumor cells to

drain selfishly the blood glucose pool that non-transformed cells use as

sparingly as possible.
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nucleotides, which serve as co-factors in phosphoryla-

tion reactions as well as building blocks of nucleic

acids.

3 The OPPPW is also the major source of NADPH

H+ required as co-factor for reductive biosyntheses as

well as for antioxidative enzymatic reactions such as

the glutathione reductase reaction.

4 Reduction and acylation of the glycolytic intermedi-

ate dihydroxyacetonphosphate delivers the phospha-

tidic acid required for the synthesis of triglycerides and

membrane lipids.

5 Acetyl-CoA produced from the glycolytic end prod-

uct pyruvate may either enter the tricarboxylic acid

(TCA) cycle, the main hydrogen supplier of oxidative

energy production, or serve as a precursor for the syn-

thesis of fatty acids, cholesterol and some non-essential

amino acids.

6 The carbon skeleton of all monosaccharides used in

the synthesis of heteroglycans and glycoproteins may

derive from glucose.

All these metabolic objectives of glucose utilization

are present in normal cells as well as in tumor cells.

However, in tumor cells the importance of the objec-

tives and thus their relative share in total glucose utili-

zation varies during different stages of tumor

development. For example, progressive impairment of

mitochondrial respiration or administration of anti-can-

cer drugs may result in higher production rates of reac-

tive oxygen species (ROS). This requires tumor cells to

direct an increasing fraction of glucose to the NADPH2

delivering oxidative pentose pathway, an important

switch in glucose utilization which has recently been

shown to be promoted by deficient p53 [1].

An outstanding biochemical characteristic of neo-

plastic tissue is that despite the presence of sufficiently

high levels of oxygen tension a substantial part of

ATP is delivered by glycolytic substrate-chain phos-

phorylation, a phenomenon that is referred to as aero-

bic glycolysis or the ‘Warburg effect’ [2]. The share of

aerobic glycolysis in the total ATP production of a

mitochondria
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Fig. 1. Glucose metabolism in cancer cells.

Main glucose metabolism consisting of

glycolysis (1–15), mitochondrial pyruvate

metabolism, synthesis of fatty acids (21),

lipid synthesis (21–22), glycogen metabolism

(23–26) and pentose phosphate pathway

(27–31). Reaction numbers correspond to

numbers in the text. Characteristic isoforms

occurring in cancer cells are marked by

yellow boxes, characteristic gene expres-

sion changes by red arrows (see Table 1 for

summary information on gene expression

and isoforms).
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tissue can be roughly estimated from the ratio between

lactate formation and glucose uptake: if lactate is

exclusively formed via glycolysis this ratio is two; if

glucose is fully oxidized to carbon dioxide and water

the ratio is zero. Based on mitochondrial P ⁄O ratios of

2.5 or 1.5 with NADH H+ or FADH2, respectively,

glycolysis generates approximately 15-fold less ATP

per mole of glucose as the free energy contained in the

glycolytic end product lactate is not exploited [3,4].

Hence, in conditions where the ATP demand of the

tumor is exclusively covered by glycolysis [2,5], the uti-

lization rate of glucose has to be increased 15-fold

compared with conditions of complete glucose oxida-

tion via oxidative phosphorylation. The ‘glucose addic-

tion’ of tumors exhibiting the Warburg effect implies

that dietary restriction can effectively reduce the

growth rate of tumors unless they have acquired muta-

tions that confer resistance to it [6,7].

Why aerobic glycolysis in tumors?

Various explanations have been offered to account for

the occurrence of aerobic glycolysis in tumors, all of

them having some pros and cons.

(a) Zonated energy metabolism in massive tumors In

a massive tumor with poor or even non-existent vascu-

larization the oxygen concentration decreases sharply

from the periphery to the center of the tumor [8]. It is

conceivable that cells located nearest to the blood sup-

ply exhibit predominantly oxidative phosphorylation

whereas cells further away will generate their ATP pre-

dominantly by anaerobic glycolysis (the Pasteur effect)

[9]. Taking these two spatially distinct modes of energy

production together the tumor as whole will appear to

rely on aerobic glycolysis.

(b) Aggressive lactate production Accumulation of

lactate in the tumor’s microenvironment is accompa-

nied by a local acidosis that facilitates tumor invasion

through both destruction of adjacent normal cell popu-

lations and acid-induced degradation of the extracellu-

lar matrix and promotion of angiogenesis [10].

According to this view, aerobic lactate production is

used by tumors to gain a selective advantage over

adjacent normal cells. The existence of specific proton

pumps in the plasma membrane of tumor cells that

expel protons into the external space, thereby contrib-

uting to cellular alkalinization and extracellular acido-

sis [11], support this interpretation.

Arguments (a) and (b) fail, however, to explain the

presence of aerobic glycolysis in leukemia cells [12]

that do not form massive tumors, which have free

access to oxygen and which cannot form an acidic

microenvironment.

(c) Attenuation of ROS production Reduction of

mitochondrial ATP production can diminish the pro-

duction rate of ROS as the respiratory chain is a

major producer of ROS [13]. Indeed, enforcing a

higher rate of oxidative phosphorylation either by

restricted substrate supply of tumors [14] or inhibition

of the glycolytic enzyme lactate dehydrogenase A

(LDH-A) [15] leads to a higher production of ROS

and a significant reduction in tumor growth. However,

forcing tumors to increase the rate of oxidative phos-

phorylation does not necessarily lead to higher ROS

production. For example, reactivating mitochondrial

ATP production of colon cancer cells by overexpres-

sion of the mitochondrial protein frataxin [14] was not

accompanied by a significant increase in ROS produc-

tion.

(d) Enforced pyruvate production An increase of lac-

tate concentration through enhanced aerobic glycolysis

is paralleled by an increase of pyruvate concentration

as both metabolites are directly coupled by an equilib-

rium reaction catalyzed by LDH (see reaction 14 in

Fig. 1). Pyruvate and other ketoacids have been shown

to act as efficient antioxidants by converting hydrogen

peroxide to water in a non-enzymatic chemical reac-

tion [16]. Thus, increased pyruvate levels could con-

tribute to diminishing the otherwise high vulnerability

of tumors to ROS.

Finally, it has to be noted that a switch from oxi-

dative to glycolytic ATP production in the presence of

sufficiently high oxygen levels also occurs in normal

human cells such as lymphocytes or thrombocytes

[17,18], which are able to abruptly augment their

energy production upon activation. To make sense of

this phenomenon one has to distinguish the thermody-

namic efficiency of a biochemical process from its

absolute capacity and flexible control according to the

physiological needs of a cell [19]. From our own

model-based studies on the regulation of glycolysis

[20,21] we speculate that its high kinetic elasticity, i.e.

the ability to change the flux rate instantaneously by

more than one order of magnitude due to allosteric

regulation and reversible phosphorylation of key glyco-

lytic enzymes [22], may compensate for the lower ATP

yield of this pathway. This regulatory feature of glycol-

ysis might be of particular significance for tumors

experiencing large variations in their environment

and internal cell composition during development and

differentiation.

As the focus of this review is on tumor-specific

enzyme variants in glucose metabolism we will also

discuss some recent findings on mutated enzyme vari-

ants in the TCA cycle which have been implicated in

tumorigenesis.

Tumor specific alterations in metabolism A. Herling et al.
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In the following we will review current knowledge

on tumor-specific expression and regulation of the

individual enzymes catalyzing the reactions shown in

Fig. 1. Quantitative assessment of the regulatory rele-

vance of an enzyme for flux control in a specific meta-

bolic pathway is the topic of metabolic control theory

[23–25]. Rate limitation (or rate control) by an enzyme

means that changing the activity of the enzyme by x%

results in a significant change of the pathway flux by

at least 0.5x% (whether 0.5x% or higher is a matter of

convention). The way that the change of enzyme activ-

ity is brought about is important: increasing the

amount of the enzyme through a higher rate of gene

expression or increasing the concentration of an allo-

steric activator by the same percentage may have com-

pletely different impacts on the pathway flux.

Moreover, the degree of rate limitation exerted by an

enzyme depends upon the metabolic state of the cell.

For example, in intact mitochondria and with suffi-

cient availability of oxygen the rate of oxidative phos-

phorylation is determined by the ATP ⁄ADP ratio, not

by the capacity of the respiratory chain. However,

under hypoxic conditions rate limitation through the

respiratory chain becomes significant [26]. We will use

the term ‘control enzyme’ to designate the property of

an enzyme to become rate limiting under certain physi-

ological conditions and to be subject to several modes

of regulation such as, for example, binding of allosteric

effectors, reversible phosphorylation or variable gene

expression of its subunits.

Tumor-specific expression and
regulation of enzymes involved in
glucose metabolism

Glycolysis (reactions 1–15)

The pathway termed glycolysis commonly refers to the

sequence of reactions that convert glucose into pyru-

vate or lactate, respectively (Fig. 1).

(1) Glucose transporter (GLUT) (TCDB 2.A.1.1)

Multiple isoforms of GLUT exist, all of them being

12-helix transmembrane proteins but differing in their

kinetic properties. GLUT1, a high affinity glucose

transporter (Km � 2 mm), is overexpressed in a signifi-

cant proportion of human carcinomas [27–29]. By con-

trast, the insulin-sensitive transporter GLUT4 tends to

be downregulated [30], thus rendering glucose uptake

into tumor cells largely insulin-insensitive. Abundance

of GLUT1 correlates with aggressive tumor behavior

such as high grade (poorly differentiated) invasion and

metastasis [31–33]. Transcription of the GLUT1 gene

has been demonstrated to be under multiple control by

the hypoxia-inducible transcription factor HIF-1 [34],

transcription factor c-myc [35] and the serine ⁄ threo-
nine kinase Akt (PKB) [36,37]. The hypoxia response

element, an enhancer sequence found in the promoter

regions of hypoxia-regulated genes, has been found for

GLUT1 and GLUT3 [38]. Stimulation of GLUT1-

mediated glucose transport by hypoxia occurs in three

stages (reviewed by Behrooz and Ismail-Beigi [39] and

Zhang et al. [40]). Initially, acute hypoxia stimulates

the ‘unmasking’ of glucose transporters pre-existing on

the plasma membrane. A more prolonged exposure to

hypoxia results in enhanced transcription of the

GLUT1 gene. Finally, hypoxia as well as hypoglycemia

lead to increased GLUT1 protein synthesis due to neg-

ative regulation of the RNA binding proteins hnRNP

A2 and hnRNP L, which bind an AU-rich response

element in the GLUT1 ⁄ 3 UTR under normoxic and

normoglycemic conditions, leading to translational

repression of the glucose transporter [41].

Intriguingly, to further increase the transport capac-

ity for glucose, epithelial cancer cells additionally

express SGLT1 [42,43], an Na+-coupled active trans-

porter which is normally only expressed in intestinal

and renal epithelial cells and endothelial cells at the

blood–brain barrier.

Metabolic control analysis of glycolysis in AS-30D

carcinoma and HeLa cells provided evidence that

GLUT and the enzyme hexokinase (see below) exert

the main control (71%) of glycolytic flux [44]. Evi-

dence for the regulatory importance of the two iso-

forms GLUT1 and GLUT3 typically overexpressed in

tumor cells is also provided by the fact that these

transporters are upregulated in cells and tissues with

high glucose requirements such as erythrocytes, endo-

thelial cells and the brain [45].

(2) Hexokinase (HK) (EC 2.7.1.1)

There are four important mammalian HK isoforms.

Besides HK-1, an isoenzyme found in all mammalian

cells, tumor cells predominantly express HK-2 [46].

Expression studies revealed an approximately 100-fold

increase in the mRNA levels for HK-2 [47–51]. The

prominent role of HK-2 for the accomplishment of the

Warburg effect has been demonstrated by Wolf et al.

who found that inhibition of HK-2, but not HK-1, in

a human glioblastoma multiforme resulted in the resto-

ration of normal oxidative glucose metabolism with

decreased extracellular lactate and increased O2 con-

sumption [51]. Both HK-1 and HK-2 are high affinity

enzymes with Km values for glucose of about 0.1 mm.

A. Herling et al. Tumor specific alterations in metabolism
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Thus, the flux through these enzymes becomes limited

by the availability of glucose only in the case of

extreme hypoglycemia.

The main allosteric regulators of HK-1 and HK-2

are ATP, inorganic phosphate and the reaction prod-

uct glucose 6-phosphate. Inorganic phosphate antago-

nizes glucose 6-phosphate inhibition of HK-1 but adds

to glucose 6-phosphate inhibition of HK-2. This

remarkable difference has led to the suggestion that

HK-1 is the dominant isoform in tissues with high cat-

abolic (=glycolytic) activity whereas HK-2 is better

suited for anabolic tasks, i.e. re-synthesis of glycogen

[52] and provision of glucose 6-phosphate for the

OPPPW [53].

HK-2 has been shown to be attached to the outer

membrane of mitochondria where it interacts via its

hydrophobic N-terminus (15 amino acids) with the

voltage-dependent anion channel (VDAC) [54]. Akt

stimulates mitochondrial HK-2 association whereas

high cellular concentrations of the reaction product

glucose 6-phosphate cause a conformational change of

the enzyme resulting in its detachment from the

VDAC. HK-2 bound to mitochondria occupies a pre-

ferred site to which ATP from oxidative phosphoryla-

tion is directly channeled, thus rendering this

‘sparking’ reaction of glycolysis independent of glyco-

lytic ATP delivery [55,56]. However, experiments with

isolated hepatoma mitochondria demonstrated that

adenylate kinase (used as extra-mitochondrial ATP

regenerating reaction) and oxidative phosphorylation

contributed equally to the production of ATP used by

HK-2 [57]. Apparently, the results of in vitro experi-

ments with HK-2 bound to isolated mitochondria

depend on the specific assay conditions (e.g. ADP con-

centration, type of ATP regenerating system used), so

that the degree of coupling between the rate of oxida-

tive phosphorylation and HK-2 activity and the physi-

ological implications of such a coupling remain

elusive. For neuronal cells, expressing predominantly

the HK-2 isoform, it has been proposed that direct

coupling of HK-2 activity to the rate of oxidative

phosphorylation may ensure introduction of glucose

into the glycolytic metabolism at a rate commensurate

with terminal oxidative stages, thus avoiding produc-

tion of (neurotoxic) lactate [58]. Such a hypothetical

function of HK-2 can hardly be reconciled with the

notion of excessive lactate production being the ulti-

mate goal of the Warburg effect (see above). Further-

more, attachment of HK-2 to the VDAC is thought to

be anti-apoptotic by hindering the transport of the

pro-apoptotic protein BAX to the outer mitochondrial

membrane. This prevents the formation of the mito-

chondrial permeability pore and hence the mitochon-

drial release of cytochrome c and APAF-1, an initial

event in the activation of the proteolytic cascade lead-

ing to cell destruction [54]. However, a recent genetic

study indicated that a mitochondrial VDAC is dispens-

able for induction of the mitochondrial permeability

pore and apoptotic cell death [59].

(3) Glucose 6-phosphate isomerase (GPI ⁄ AMF) (EC

5.3.1.9)

GPI can occur as alternatively monomer, homodimer

or tetramer, with the monomer showing the highest

and the tetramer showing the lowest activity. Phos-

phorylation of Ser185 by protein kinase CK2 facilitates

homo-dimerization and thus diminishes the activity of

the enzyme [60]. Studies in eight different human can-

cer cell lines have consistently revealed 2- to 10-fold

elevated mRNA levels of GPI. Both HIF-1 and vascu-

lar endothelial growth factor have been shown to

induce enhanced expression of GPI [61].

GPI can be excreted by tumor cells in detectable

amounts thus serving as a tumor marker. Extracellular

GPI acts as an autocrine motility factor (AMF) elicit-

ing mitogenic, motogenic and differentiation functions

implicated in tumor progression and metastasis [62].

The exact mechanism responsible for the conversion of

the cytosolic enzyme into a secretory cytokine has not

yet been fully elucidated [63]. It has been proposed

that GPI ⁄AMF phosphorylation is a potential regula-

tor of its secretion and enzymatic activity [60,64].

(4) Phosphofructokinase-1 (PFK-1) (EC 2.7.1.11)

PFK-1 catalyzes a rate-controlling reaction step of gly-

colysis. Although the enzyme level has little effect on

glycolytic flux in yeast [65], the activity of this enzyme

is subject to multiple allosteric regulators, which con-

siderably change the rate of glycolysis. Allosteric acti-

vation is mainly exerted by fructose 2,6-P2 [66]. PFK of

tumor cells is less sensitive to allosteric inhibition by

citrate and ATP [67], important for two regulatory phe-

nomena: the Pasteur effect, i.e. the increase of glucose

utilization in response to a reduced oxygen supply; and

the so-called Randle effect, i.e. reduced utilization of

glucose in heart and resting skeletal muscle with

increased availability of fatty acids [68,69]. Hence,

alterations in the allosteric regulation of tumor PFK by

ATP and citrate may be crucial for partially decoupling

glycolysis from oxidative phosphorylation and fatty

acid utilization. This change in allosteric inhibition is

probably due to the simultaneous presence of various

isoforms of PFK subunits which may associate with

different types of oligomers showing altered allosteric

Tumor specific alterations in metabolism A. Herling et al.
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properties compared with the ‘classical’ homomeric tet-

ramers in normal cells [70]. In melanoma cells, eleva-

tion of the cellular Ca2+ concentration leads to

detachment of PFK from the cytoskeleton and thus

diminishes the provision of local ATP in the vicinity of

the cytoskeleton [71]. The expression of PFK in tumor

cells can be enhanced by Ras and src [72].

(5), (6) Phosphofructokinase-2 (PFK-2), fructose

2,6-bisphosphatase (PFKFB) (EC 2.7.1.105)

Unlike yeast cells, human PFK-2 and PFKFB

represent one and the same bifunctional protein (PFK-

2 ⁄FBPase) that upon phosphorylation ⁄dephosphoryla-
tion may function as either phosphatase or kinase,

respectively, and control the concentration of the allo-

steric PFK-1 activator fructose 2,6-P2. Four genes

encoding PFK-2 ⁄FBPase have been identified and

termed PFKFB1 to PFKFB4. The PFKFB3 protein

(also named iPFK-2) is expressed in high levels in

human tumors in situ. Induction of this isoform is

mediated by HIF-1, cMyc, Ras, src and loss of func-

tion of p53 [73]. Rapidly proliferating cancer cells con-

stitutively express the isoform iPFK-2 [74]. PFKFB3

comprises an additional phosphorylation site that can

be phosphorylated by the regulatory kinases AMPK

[75] and Akt [76]. This phosphorylation results in a

stabilization of the kinase activity of the enzyme.

Besides PFKFB3, tumor cells express the specific p53-

inducible histidine phosphatase TIGAR (TP53-induced

glycolysis and apoptosis regulator). This enzyme is

capable of reducing the level of fructose 2,6-P2 inde-

pendent of the phosphorylation state of iPFK-2.

Reducing the level of fructose 2,6-P2 and thus the

activity of PFK-1 improves the supply of glucose

6-phosphate for the OPPPW, the main supplier of

NADPH H+ required for antioxidative defense reac-

tions. At a low consumption rate of NADPH H+, the

rate of glucose 6-phosphate dehydrogenase (G6PD)

catalyzing the first step of the OPPPW is controlled by

the level of NADP+ while glucose 6-phosphate is

almost saturating at this enzyme (Km values lie in the

range of 0.04–0.07 mm [77] whereas glucose 6-phos-

phate levels between 0.1 and 0.3 mm have been

reported [78]). Enhanced NADPH H+ consumption,

e.g. due to higher activity of antioxidative defense

reactions, may increase the flux through the G6PD

and the OPPPW by more than one order of magni-

tude. Mathematical modeling suggests that the avail-

ability of glucose 6-phosphate may become rate

limiting [79]. This may account for the observation

that high activity levels of TIGAR result in decreased

cellular ROS levels and lower sensitivity of cells to

oxidative-stress-associated apoptosis [80]. Taken

together, the simultaneous presence of iPFK-2 and TI-

GAR allows much higher variations in the level of

fructose 2,6-P2 and thus of PFK-1 activity compared

with normal cells [81].

(7) Aldolase (ALD) (EC 4.1.2.13)

There are three tissue-specific isoforms (A, B, C) of

ALD. Studies on representative tumors in the human

nervous system revealed largely varying abundance of

ALD C [82]. The ALD A enzyme has been demon-

strated to be inducible by HIF-1 [83–85]. Expression

of ALD isoforms in cancer cells can be either down-

regulated, as for example in glioblastoma multiform

[86] or human hepatocellular carcinoma [87,88], or up-

regulated as in pancreatic ductal adenocarcinoma [89].

Serum content of ALD may become elevated in malig-

nant tumors [90] with ALD A being the predominant

isoform [91] and thus being a candidate for a tumor

marker [92]. Intriguingly, glyceraldehyde 3-phosphate,

the reaction product of ALD, has been characterized

as an anti-apoptotic effector owing to its ability to

directly suppress caspase-3 activity in a reversible non-

competitive manner [93].

The flux through the ALD reaction splits into fluxes

towards pyruvate, phospatidic acid and nucleotides via

the NOPPPW. Thus, larger differences in ALD expres-

sion may reflect tissue-specific differences in the rela-

tive activity of these pathways. For example, in

pancreatic tumor cells changes of the lipid content

induce a higher proliferation rate [94] so that a higher

demand for the glycerol lipid precursor DHAP might

necessitate higher activities of ALD and triosephos-

phate isomerase in this tumor type.

(8) Triosephosphate isomerase (TPI) (EC 5.3.1.1)

Early studies have shown that the concentration of

TPI in the blood plasma of patients with diagnosed

solid tumors is significantly enhanced [95]. This finding

has recently been confirmed by detection of auto-anti-

bodies against TPI in sera from breast cancer patients

[96]. Expression of TPI seems to be downregulated in

quiescent parts of the tumors as shown for drug-resis-

tant SGC7901 ⁄VCR gastric cancer cells [97].

(9) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

(EC 1.2.1.12)

GAPDH has been implicated in numerous non-glyco-

lytic functions ranging from interaction with nucleic

acids to a role in endocytosis and microtubular
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transport (for a review see [98]). Expression of GAP-

DH is highly dependent on the proliferative state of

the cell and can be regulated by the transcription fac-

tors HIF-1, p53 and c-jun ⁄AP1 [99,100]. GAPDH is a

key redox-sensitive protein, the activity of which is lar-

gely affected by covalent modifications by oxidants at

its highly reactive Cys152 residue. These oxidative

changes not only affect the glycolytic function but also

stimulate the participation of GAPDH in cell death

[101].

(10) Phosphoglycerate kinase (PGK) (EC 2.7.2.3)

As with most glycolytic enzymes, the level of PGK-1

in tumor cells is enhanced by hypoxia. Immuno-histo-

chemical analysis of 63 pancreatic ductal adenocarci-

noma specimens revealed moderate to strong

expression of PGK-1 in about 70% of the tumors

[102]. This enzyme can be secreted and facilitates

cleavage of disulfide bonds in plasmin, which triggers

proteolytic release of the angiogenesis inhibitor an-

giostatin [103]. PGK secretion is under the control of

oxygen-sensing hydrolases; hypoxia inhibits its secre-

tion [104].

(11) Phosphoglycerate mutase (PGM) (EC 5.4.2.1)

PGM exists in mammalian tissues as three isozymes

that result from homodimeric and heterodimeric com-

binations of two subunit types (muscle M and brain

B). The level of PGM-M is known to be largely upreg-

ulated in many cancers, including lung, colon, liver

and breast [105,106]. In mouse embryonic fibroblasts,

a 2-fold increase in PGM activity enhances glycolytic

flux, allows indefinite proliferation and renders cells

resistant to ras-induced arrest [107]. More recent evi-

dence indicates that p53 is capable of downregulating

the expression of PGM. This finding is consistent

with the notion that p53 would negatively regulate

glycolysis.

(12) Enolase (EN) (EC 4.2.1.11)

The a-enolase gene encodes both a glycolytic enzyme

(a-enolase) and a shorter translation product, the c-myc

binding protein (MBP-1) lacking enzymatic activity.

These divergent a-enolase gene products are interlinked:
expression of the glycolytic enzyme a-enolase is upregu-
lated by c-myc, a transcription factor that is known to

be overexpressed in approximately 70% of all human

tumors [35]. On the other hand, the alternative gene

product MBP-1 negatively regulates c-myc transcription

by binding to the P2 promotor [108].

(13) Pyruvate kinase (PK) (EC 2.7.1.40)

PK has two isoforms, PK-M and PK-L. In contrast to

differentiated cells, proliferating cells selectively express

the M2 isoform (PK-M2) [109]. During tumorigenesis,

the tissue-specific isoenzymes of PK (PK-L in the liver

or PK-M1 in the brain) are replaced by the PK-M2

isoenzyme [110]. Unlike other PK isoforms, PK-M2 is

regulated by tyrosine-phosphorylated proteins [111].

Phosphorylation of the enzyme at serine and tyrosine

residues induces the breakdown of the tetrameric PK

to the trimeric and dimeric forms. Compared with the

tetramer, the dimer has a lower affinity for phospho-

enolpyruvate [112]. This regulation of enzyme activity

in the presence of growth signals may constitute a

molecular switch that allows proliferating cells to redi-

rect the flux of glucose carbons from the formation of

pyruvate and subsequent oxidative formation of ATP

to biosynthetic pathways branching in the upper part

of glycolysis and yielding essential precursors of cell

components [113].

The regulation of PK by HIF-1 is not fully under-

stood [114]. Discher et al. [115] reported the finding of

two potential binding sites for HIF-1 in the first intron

of the PK-M gene. On the other hand, Yamada and

Noguchi [116] reported that there is no HIF-1 binding

sequence 5¢-ACGTGC-3¢ in the promoter of the PK-

M2 gene and suggest that the interaction of SP1 and

HIF-1 with CREB binding protein ⁄p300 might

account for the stimulation of PK-M gene transcrip-

tion by hypoxia.

(14) Lactate dehydrogenase (LDH) (EC 1.1.1.27)

Tumor cells specifically express the isoform LDH-A,

which is encoded by a target gene of c-Myc and HIF-1

[15,99]. The branch of pyruvate to either lactate or

acetyl-CoA is controlled by the cytosolic LDH and the

mitochondrial pyruvate dehydrogenase (see reaction 16

in Fig. 1). Reducing the activity of either reaction will

cause an accumulation of pyruvate and hence promote

its utilization through the complementary reaction.

Indeed, reducing the LDH-A level of human Panc (P)

493 B-lymphoid cells by siRNA or inhibition of the

enzyme by the inhibitor FX11 reduced ATP levels and

induced significant oxidative stress and subsequent cell

death that could be partially reversed by the antioxi-

dant N-acetylcysteine [15].

(15) Plasma membrane lactate transport (LACT)

Lactate is transported over the plasma membrane by

facilitated diffusion either by the family of proton-linked
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monocarboxylate transporters (MCTs) (TCDB 2.A.

1.13.1) or by SMCT1 (TCDB 2.A.21.5.4), an Na+

-coupled lactate transporter. Multiple MCT isoforms

with different kinetic properties and tissue distribution

exist [117]. The MCT4 isoform is upregulated in many

cancer types [42,118,119]. However, some studies could

not show an increased expression of MCT4 in cancer

[120,121].

Increased expression of MCT1, the isoform found in

most cell types, has been demonstrated in some studies

[119,120,122], whereas other groups found a decreased

expression [121,123]. The expression of MCT2, a high

affinity isoform mainly implicated in the import of lac-

tate [42], is decreased in tumor cell lines [119,120].

SMCT1, the Na+-coupled lactate transporter with

high affinity for lactate and implicated in lactate

import [42], is downregulated in a variety of cancer tis-

sue, including colon [124,125], thyroid [126,127], stom-

ach [128], brain [129], prostate [130] and pancreas

[131]. Re-expression of SMCT1 in cancer cell lines

results in growth arrest and apoptosis in the presence

of butyrate or pyruvate [42].

Mitochondrial pyruvate metabolism (reactions

16–20)

(16) Mitochondrial pyruvate transporter (MPT)

(EC 3.A.8)

Current knowledge of the structural and kinetic fea-

tures of MPT is limited. No tumor-specific MPT is

currently known, as indicated by the practically identi-

cal Km values for pyruvate determined for transporters

isolated from mitochondria of several types of tumor

cells and normal cells [132]. A comparative study of

the transport of pyruvate in mitochondria isolated

from normal rat liver and from three hepatomas

revealed consistently diminished transport capacity in

the tumors [133]. The activity of the MPT in Ehrlich

ascites tumor cells was found to be 40% lower than in

rat liver mitochondria [132]. A lower activity of MPT

in conjunction with a significantly reduced activity of

pyruvate dehydrogenase (reaction 17, see below) favors

branching of pyruvate to lactate and thus aerobic

glycolysis.

(17) Pyruvate dehydrogenase (PDH) (EC 1.2.4.1)

PDH is a multi-catalytic mitochondrial enzyme com-

plex that catalyses the conversion of pyruvate to ace-

tyl-CoA, a central metabolite of the intermediary

metabolism. Acetyl-CoA can be oxidized in the citric

acid cycle for aerobic energy production, serve as a

building block for the synthesis of lipids, cholesterol

and ketone bodies and provide the acetyl group for

numerous post-translational acetylation reactions. The

activity of PDH is mainly controlled by reversible

phosphorylation that renders the enzyme inactive. One

of the four known mammalian isoforms of the pyru-

vate dehydrogenase kinase (PDHK-1) (EC 2.7.11.2)

has been shown to be inducible by HIF-1 in renal car-

cinoma cells and in a human lymphoma cell line

[134,135], consistent with a reduction of glucose-

derived carbons into the TCA cycle. However, overex-

pression of PDHK-1 and thus inhibition of PDH is

not a common feature of all tumor cells. Oxidation of

exogenous pyruvate by PDH was found to be

enhanced in mitochondria isolated from AS-30D hepa-

toma cells in comparison with their normal counter-

part [136].

(18) Citric acid cycle

Mutations in TCA cycle enzymes can lead to tumori-

genesis [137–139]. Mutations of the succhinate dehy-

drogenase (SDH) (EC 1.3.5.1) and the fumarate

hydratase (FH) (EC 4.2.1.2) have been shown to result

in paragangliomas and pheochromocytomas. The suc-

cinate dehydrogenase complex assembly factor 2

(SDHAF2 ⁄SDH5), responsible for the incorporation

of the co-factor FAD into the functional active SDH,

was recently shown to be a paraganglioma-related

tumor suppressor gene [137,140].

FH mutations have been found in cutaneous and

uterine leiomyomas, leiomyosarcomas and renal cell

cancer [137,141–146].

Two mechanisms have been suggested to account

for the connection between loss of function of SDH or

FH and tumorigenesis. (a) Redox stress due to genera-

tion of ROS by mutant SDH proteins [147,148] causes

an inhibition of HIF-dependent prolyl hydroxylase

(PHD) (EC 1.14.11.2) [149,150], an enzyme targeting

under normoxic conditions the a-subunit of HIF for

degradation. According to this explanation ROS can

lead to pseudo-hypoxia in tumors with SDH mutations

via stabilization of HIF [151]. (b) Metabolic signaling

in SDH-deficient tumors via increased succinate levels

inhibits the PHD and therefore leads to stabilization

of the HIF-1a subunit at normal oxygen levels

[141,151,152]. A similar mechanism was proposed for

the consequences of FH deficiency: accumulating

fumarate can act as a competitive inhibitor of PHD

leading to a stabilization of HIF-1 [138,152,153].

Another enzyme of the TCA cycle that is frequently

mutated specifically in some gliomas, glioblastomas

and in acute myeloid leukemias with normal karyotype

is the NADP+-dependent isocitrate dehydrogenase
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(IDH) (EC 1.1.1.42) 1 and 2 (for a recent review see

[154]). Mutant forms of the brain IDH1 acquired a

new catalytic ability to reduce a-ketoglutarate (aKG)

to 2-hydroxyglutarate (2HG) [155]. Elevated levels of

2HG are supposed to promote carcinogenesis [156].

However, the molecular mode of action of this com-

pound has not yet been established. It can be specu-

lated that owing to chemical similarity 2HG acts as a

competitive inhibitor in aKG-dependent oxygenation

reactions, in particular those catalyzed by PHD. If this

were true, increased levels of 2HG could mimic

hypoxic conditions.

The impact of the discovered enzyme mutants for

flux control of the TCA cycle has not been studied so

far. Labeling studies of TCA cycle intermediates using
[1)14C]acetate as substrate yielded consistently lower

fluxes in cells from Ehrlich mouse ascites tumors,

Walker carcinoma and LC-18 carcinoma [157]. The

authors of this very old study attributed their finding

to some defect in an intra-Krebs-cycle reaction which,

however, has not been identified so far. As the TCA

cycle is the main supplier of redox equivalents for the

respiratory chain, a reduction of its turnover rate low-

ers the mitochondrial transmembrane potential, the

formation rate of ROS and the rate of oxidative phos-

phorylation and thus promotes the tumor to switch to

aerobic glycolysis.

(19) Respiratory chain and F0F1-ATPase (EC 3.6.3.14)

Recent observations suggest a wide spectrum of oxida-

tive phosphorylation (OXPHOS) deficits and decreased

availability of ATP associated with malignancies

and tumor cell expansion [158]. Expression levels of

OXPHOS enzymes and distribution patterns, most

importantly the b-F1 subunit of ATPsynthetase, are

downregulated in a variety of cancers [159–161],

including colon, esophagus, kidney, liver, mammary

gland and stomach [162–164]. This is probably one

reason for the tumor’s switch to aerobic glycolysis,

which can also be induced by incubating cancer cells

with oligomycin, an inhibitor of mitochondrial ATP

synthetase [159,160]. Similarly, reduction of OXPHOS

by targeted disruption of frataxin, a protein involved

in the synthesis of mitochondrial Fe ⁄S enzymes, leads

to tumor formation in mice [165].

Deficiencies of electron carriers of the respiratory

chain implicated in tumor growth have also been iden-

tified in complex I (EC 1.6.5.3) [144,166].

A key component determining the balance between

the glycolytic pathway and mitochondrial OXPHOS is

the p53-dependent regulation of the gene encoding

cytochrome c oxidase 2 (SCO2) (EC 1.9.3.1) [167]

which, in conjunction with the SCO1 protein, is

required for the assembly of cytochrome c oxidase

[168]. SCO2, but not SCO1, is induced in a p53-depen-

dent manner as demonstrated by a 9-fold increase in

transcripts. Thus, mutations of p53 cause impairment

of OXPHOS due to COX deficiency and a shift of cellu-

lar energy metabolism towards aerobic glycolysis [167].

(20) Transport of mitochondrial acetyl-CoA to the cytosol

Formation of acetyl-CoA from the degradation of

glucose and fatty acids occurs in the mitochondrial

matrix whereas synthesis of fatty acids and cholesterol

requires cytosolic acetyl-CoA. Hence, the efficiency of

acetyl-CoA export from the mitochondrion to the

cytosol is critical for the synthesis of membrane lipids

and cholesterol needed for the rapid size gain of

tumor cells. Mitochondrial acetyl-CoA condenses with

oxaloacetate to citrate that can be transported to the

cytosol [169]. Tumor mitochondria export comparably

large amounts of citrate [161,170,171]. In the cytosol,

citrate is split again into oxaloacetate and acetyl-CoA

by the ATP citrate lyase (EC 2.3.3.8). Inhibition of ATP

citrate lyase was reported to suppress tumor cell prolif-

eration and survival in vitro and also to reduce in vivo

tumor growth [172]. The activity of ATP citrate lyase is

under the control of the Akt signaling pathway [173].

Lipid synthesis (21, 22)

(21) Fatty acid synthetase (FASN) (EC 2.3.1.85)

In cancer cells, de novo fatty acid synthesis is com-

monly elevated and the supply of cellular fatty acids is

highly dependent on de novo synthesis. Numerous

studies have shown overexpression of FASN in various

human epithelial cancers, including prostate, ovary,

colon, lung, endometrium and stomach cancers [174].

FASN expression is regulated by signaling pathways

associated with growth factor receptors such as epider-

mal growth factor receptor, estrogen receptor, andro-

gen receptor and progesterone receptor. Downstream

of the receptors, the phosphatidylinositol-3-kinase Akt

and mitogen-activated protein kinase are candidate sig-

naling pathways that mediate FASN expression

through the sterol regulatory element binding protein

1c. In breast cancer BT-474 cells that overexpress

HER2, the expression of FASN and acetyl-CoA car-

boxylase (ACC) are not mediated by sterol regulatory

element binding protein 1 but by a mammalian target

of rapamycin dependent selective translational induc-

tion [175].

Apart from the transcriptional regulation, the activ-

ity of FASN is also controlled at post-translational
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levels. Graner et al. showed that the isopeptidase

ubiquitin-specific protease 2a (EC 3.4.19.12) interacts

with and stabilizes FASN protein in prostate cancer

[176]. Finally, a significant gene copy number gain of

FASN has been observed in prostate adenocarcinoma

[177]. Taken together, these observations suggest that

tumor-related increase of FASN activity could be regu-

lated at multiple levels [178].

(22) Formation of 1,2-diacyl glycerol phosphate

(phosphatidate)

There are two alternative pathways leading from the

glycolytic intermediate dihydroxyacetone phosphate

(DHAP) to 1,2-diacyl glycerol phosphate, the precur-

sor of both triglycerides and phospholipids: (a) initial

NADH H+-dependent reduction of DHAP to glycerol

phosphate by a-glycerophosphate dehydrogenase (EC

1.1.1.8) (GDPH) and subsequent attachment of two

fatty acid moieties, and (b) acylation of DHAP to acyl-

DHAP followed by an NADPH H+-dependent reduc-

tion to 1-acyl glycerol phosphate and attachment of

the second fatty acid. Notably, GDPH competes with

the LDH reaction 14 for cytosolic NADH H+. There

is also a membrane-bound mitochondrial form of this

enzyme that works with the redox couples FAD ⁄
FADH2 and Q ⁄QH2. The redox shuttle constituted by

the cytosolic and mitochondrial enzyme species enables

electron transfer from cytosolic NADH H+ to complex

II (EC 1.3.5.1) of the respiratory chain. Whereas in a

wide variety of normal tissues the ratio of

LDH ⁄GPDH varies between the extremes of 0.5 and

7.0, this ratio in tumors ranges from 10 to several hun-

dred [179] enabling preferential utilization of glycolyti-

cally formed NADH H+ for lactate production. The

increase in ratio is primarily due to reduced GPDH

activity in the presence of normal or slightly increased

LDH activity. In order to assure a sufficiently high rate

of lipid synthesis, conversion of DHAP to phosphatidic

acid has to proceed predominantly via the acyl-DHAP

branch, as has been demonstrated in homogenates of

13 different tumor tissues [180].

Glycogen metabolism (reactions 23–26)

Glycogen is the main cellular glucose storage. Large

variations in glycogen content have been reported in

various tumor tissues [181]. While human cervix [182]

tumor tissue exhibits decreased glycogen levels, in

colon tumor tissue [183] and lung carcinoma [181]

increased glycogen levels can be observed. Studies in

three different human tumor cell lines have provided

evidence that these tumor-specific differences in

glycogen content are due to growth-dependent

regulation of the glycogen synthase (reaction 25) and

glycogen phosphorylase (reaction 26) [184]. These

observations together with the findings reported below

for some key enzymes of the glycogen metabolism sug-

gest large variations in the ability of individual tumors

to store and utilize glycogen.

(23) Phosphoglucomutase (EC 5.4.2.2)

Phosphoglucomutase catalyses the reversible intercon-

version of glucose 1-phosphate and glucose 6-phos-

phate into each other. Early studies in five different

solid tumors (hepatoma, carcinosarcoma, sarcoma, leu-

kemia and melanoma) showed significantly reduced

activity of phosphoglucomutase [185]. Gururaj et al.

[186] discovered that signaling kinase p21-activated

kinase 1 binds to phosphorylates and enhances the

enzymatic activity of phosphoglucomutase 1 in tumors.

The increase of activity of the phosphorylated enzyme

was only about 2-fold so that the implications of this

activation for metabolic regulation remain unclear as

the phosphoglucomutase reaction is not considered a

rate limiting step in glucose metabolism [187].

(24) UTP-glucose-1-phosphate uridylyltransferase

(UGPUT) (EC 2.7.7.9)

UGPUT catalyses the irreversible reaction of glucose

1-phosphate to UDP-glucose, a central metabolite of

glucose metabolism that is indispensable for the syn-

thesis not only of glycogen but also of glycoproteins

and heteropolysaccharides. Therefore, we were sur-

prised that a literature search did not provide any

information on the expression and regulation of this

enzyme in tumor cells. According to a proteome analy-

sis of human liver tumor tissue there is no evidence for

a significant tumor-related change of the protein level

of this enzyme [188]. On the other hand, enzymatic

assays showed – with the exception of melanoma – a

significant decrease of activity of about 50% in the

several tumors also tested for the activity of phospho-

glucomutase (see above).

(25) Glycogen synthase (EC 2.4.1.11)

Glycogen synthase has long been considered the rate

limiting step of glycogen synthesis. However, glucose

transport and glycogen phosphorylase activity have

been shown to exert considerable control on glycogen

synthesis [189–191]. The enzyme becomes inactive

upon phosphorylation either by the cAMP-dependent

protein kinase A or by the insulin-dependent glycogen
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synthase kinase 3b, a multifunctional serine ⁄ threonine
kinase that functions in diverse cellular processes

including proliferation, differentiation, motility and

survival [192]. In particular, glycogen synthase kinase

3b plays an important role in the canonical Wnt sig-

naling pathway, which is critical for embryonic devel-

opment [193,194]. Defects in Wnt signaling have been

reported in a wide range of cancers [193,195,196]. Nev-

ertheless, the role of glycogen synthase kinase 3b in

tumorigenesis is still elusive [197].

(26) Glycogen phosphorylase (GP) (EC 2.4.1.1)

GP is the rate limiting enzyme in glycogenolysis.

Reciprocally regulated as the glycogen synthase, it

becomes active upon phosphorylation by the cAMP-

dependent PKA [198]. Brain-type glycogen phosphory-

lase (BGP) is suggested to be the major isoform in

tumor and fetal tissues [199–203]. Elevated levels of

BGP have been detected in renal cell carcinoma [203],

colorectal carcinomas [204], the glycogen-poor Morris

hepatoma 3924A [205] and non-small-cell lung carci-

noma where high BGP expression was associated with

poorer survival [206]. The expression of BGP has been

proposed to be a potential early biomarker for human

colorectal carcinomas [204]. By contrast, in brain

tumor tissues (astrocytoma and glioblastoma) the

activity of GP was found to be practically zero. Inter-

estingly, glycogen present in detectable amounts in

these tumors is hydrolytically degraded by upregulated

a-1,4-glucosidases [207]. The physiological role of

BGP is not well understood, but it seems to

be involved in the induction of an emergency glucose

supply during stressful periods such as anoxia and

hypoglycaemia.

The pentose phosphate cycle (reactions 27–32)

The pentose phosphate cycle is composed of two

branches: the OPPPW irreversibly converts glucose

6-phosphate to ribose phosphates thereby yielding

2 moles NADPH H+ per mole glucose, and the NOP-

PPW reversibly converts three pentose phosphates into

two hexose phosphates (fructose 6-phosphate) and one

triose phosphate (GAP). In contrast to non-trans-

formed cells which produce most of the ribose 5-phos-

phate for nucleotide biosynthesis through the OPPPW,

the NOPPPW has been suggested to be the main

source for ribose 5-phosphate synthesis in tumor cells

[208–210]. However, there are major differences in the

relative share of these two pathways in the delivery of

pentose phosphates when comparing slow and fast

growing carcinoma [211].

(27) Glucose 6-phosphate dehydrogenase (G6PD)

(EC 1.1.1.49)

The activity of NADPH H+-related dehydrogenases is

generally increased in tumor cells [212]. The central

importance of the redox couple NADP+ ⁄NADPH

H+ for tumor cells has been attributed, amongst

other possible reasons, to their role in the control of

the activity of redox-sensitive transcription factors

such as nuclear factor jB, activator protein 1 and

HIF-1 and the need for NADPH H+ as fuel for an-

tioxidative defense reactions. Overexpression of G6PD

in NIH3T3 cells resulted in altered cell morphology

and tumorigenic properties that could be mitigated by

glutathione depletion [213], whereas knockdown of the

G6PD in a stable line of A375 melanoma cells

decreased their proliferative capacity and colony-form-

ing efficiency [214]. In line with the potential role of

G6PD as an oncogene, its activity was found to be

upregulated in virtually all cancer cells. There is evi-

dence that the increased activity of G6PD in neoplas-

tic tissues can be attributed to post-transcriptional

activation, probably by attenuation of the inhibition

by glucose 1,6-P2 [215], as in neoplastic lesions of rat

liver a 150-fold higher vmax value was determined

although the amount of the enzyme was not signifi-

cantly higher than in extra-lesional liver parenchyma

[216].

(28) 6-Phosphogluconate dehydrogenase (6PGD)

(EC 1.1.1.44)

Early biochemical and histological studies [217]

revealed the level of 6PGD to be significantly increased

in cervical cancer which led to the proposal to use this

enzyme as a screen test for cervical carcinoma in

women [218]. Later studies in tumors of canine mam-

mary glands [219] and in human colon tumors [215]

also showed an increased level of 6PGD. As 6PGD

catalyzes the second NADPH H+ delivering reaction

of the OPPPW, its higher activity in tumors can be

reasoned along the same line of arguments as outlined

above for the higher tumor levels of G6PD. Indeed,

the two OPPPW dehydrogenases essentially act as a

single unit because the lactonase reaction (not shown

in Fig. 1) very rapidly converts the product of G6PD

into the substrate of 6PGD.

(29) Ribose 5-phosphate isomerase, ribulose 5-phosphate

epimerase (EC 5.3.1.6)

These two enzymes interconverting the three pen-

tose phosphate species ribose 5-phosphate, ribulose
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5-phosphate and xylulose 5-phosphate into each other

have not attracted the attention of cancer enzymo-

logists so far. This is strange as from a regulatory

point of view high flux rates through the OPPPW as

the main source of NADPH H+ production in normal

as well as in neoplastic tissues inevitably result in a

high production rate of ribulose 5-phosphate which, if

not used for nucleotide biosynthesis, has to be recycled

back to intermediates of the glycolytic pathway via the

NOPPPW, and this should require a correspondingly

high activity of ribose 5-phosphate isomerase and

ribulose 5-phosphate epimerase linking the OPPPW

and NOPPPW.

(30) Phosphoribosyl pyrophosphate synthetase (PRPPS)

(EC 2.7.6.1)

The formation of phosphoribosyl pyrophosphate by

PRPPS represents the first step in the de novo synthesis

of purines, pyrimidines and pyridines. The activity of

PRPPS was found to be about 4-fold augmented in

rapidly growing human colon carcinoma compared

with slowly growing xenografts [211]. This is not neces-

sarily a tumor-specific feature as this enzyme is known

to vary considerably in activity in different phases of

the cell cycle. Remarkably, a super-active form of

PRPPS has been identified in lymphoblast cell lines

characterized by an increased vmax value, inhibitor

resistance and increased substrate affinity [220]. Regu-

lation of the PRPPS in tumor cells is yet poorly char-

acterized.

(31) Transketolase (TKT) (EC 2.2.1.1)

Among the three members of the TKT gene family

(TKT, TKTL1 and TKTL2), TKTL1 has been

reported to be overexpressed in metastatic tumors and

specific inhibition of TKTL1 mRNA can inhibit cell

proliferation in several types of cancer cells [221–224].

However, direct determinations of TK activities in

tumors are lacking so far [212]. Intriguingly, fructose

induces thiamine-dependent TKT flux and is preferen-

tially metabolized via the NOPPPW. Hence, cancer

cells can readily metabolize fructose to increase prolif-

eration [225].

(32) Transaldolase (TALD) (EC 2.2.1.2)

In liver tumors, TALD1 activity was increased 1.5- to

3.4-fold over the activities observed in normal control

rat liver [222]. TALD1 was found to be extraordinarily

highly expressed in a subgroup of squamous cell carci-

noma tumors of the head and neck [226].

Concluding remarks

Rapid cell proliferation depends on both the perma-

nent presence of growth stimuli and a sufficiently high

metabolic capacity to produce all cell components

needed in different phases of the cell cycle. After dec-

ades of predominantly genetic research on tumor cells,

we are currently witnessing a renaissance of metabolic

research. One central goal is to unravel the metabolic

regulation underlying the ravenous appetite of most

tumor types for glucose.

While carefully reviewing the available literature on

tumor-specific enzymes involved in the main pathways

of glucose metabolism we observed a clear preponder-

ance of gene expression studies compared with detailed

enzyme-kinetic studies and metabolic flux determi-

nations. Obviously, during the past decade, the

application of high-throughput transcriptomics and

proteomics has resulted in a huge set of data on gene

expression of tumor-specific metabolic enzymes and of

many other key proteins such as growth-related recep-

tors, kinases and transcription factors. Taken together,

these data reveal upregulation of most metabolic

enzymes except the mitochondrial ones, a fact that

does not come as a surprise for rapidly dividing cells

exhibiting in most cases an accelerated aerobic glycoly-

sis. Importantly, these high-throughput studies point

to considerable differences in the level of specific meta-

bolic enzymes observed in various tumor types and at

different stages of tumor growth (see variations in the

upregulation and downregulation of enzyme levels

indicated in Fig. 1). It is important to refrain from the

notion that there is a unique metabolic phenotype of

tumor cells. Rather, tumor cells still exhibit specific

metabolic functions accentuated in the normal tissue

cells from which they derive. For example, HepG2

cells are still endowed with most reactions of the liver-

specific bile acid synthesizing pathway [227] entailing a

higher flux of glucose-derived carbons through this

pathway compared with other tumor cells. We think

that tumor-type-specific larger variations in the expres-

sion level of enzymes such as TIM or ALD situated at

branching points within the metabolic network can be

partially accounted for by differing capacities of the

pathways that are required to pursue tissue-specific

growth strategies (e.g. excretion of metabolites for

extracellular signaling) and which tumor cells still

maintain as heritage of their normal ancestor cells.

Notwithstanding, current knowledge of enzyme

expression levels alone does not allow us to reconstruct

the metabolic strategies pursued by a given tumor type

in different stages of differentiation and in response to

varying external conditions, e.g. drug therapy. This is
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mainly because there appears to be a surprisingly weak

concordance between the level of transcripts and pro-

teins of metabolic enzymes [228] and the fluxes that

they carry [229]. For example, the maximal rate of

G6PD in hepatic tumor lesions can be increased by

more than two orders of magnitude without significant

changes in its expression level. Some tumor cells

express specific GLUT mRNA but not the respective

protein, indicating an important role of post-transcrip-

tional regulation [230]. These examples illustrate

striking discordances between transcript levels and

enzymatic activities. Obviously, the importance of

enzyme-regulatory mechanisms operating below the

control of gene expression was dramatically underesti-

mated in the past decade, which was characterized by

the innovation and broad application of high-through-

put technologies.

It is our conviction that the key for understanding

the exceptional way of glucose utilization in tumors is

less the expression level of metabolic enzymes as such,

but rather the unique pattern of isoenzymes, the regu-

latory properties of which allow tumor cells to

develop a selfish glucose-ravening phenotype (see

Table 1). Therefore, we strongly suggest that large-

scale expression studies should be complemented with

hypothesis-driven experimentation [231] and mathe-

matical modeling [232,233]. For example, while

detailed kinetic models of glycolysis in red blood cells

[21,234] and yeast [235] have provided valuable

insights into the regulation of this important pathway

in the respective cell type such models are not avail-

able for any tumor type. In order to obtain a consis-

tent mechanistic and quantitative picture of metabolic

regulation in tumor cells more experimentation is

needed to determine, for example, the kinetic parame-

ters of tumor-specific enzymes and membrane trans-

porters, to identify novel allosteric effectors, to

measure enzyme activities in various phosphorylation

states and to measure the concentration of key metab-

olites in the cytosol and mitochondrial matrix. And

we have to pay more attention to how key metabo-

lites such as AMP, NADH H+, NADPH H+, gluta-

thione, tetrahydrofolate and others feed back to the

gene-regulatory level, e.g. by directly controlling the

activity of transcription factors. Finally, carefully

designed mathematical models are needed to bring

together all these mechanistic details in a consistent

manner. Once we are able to simulate the metabolism

of tumors on the basis of reliable mathematical mod-

els it might be possible to identify ‘Achilles’ heels’ in

tumor metabolism that can be selectively targeted by

specific drugs without globally impairing the metabo-

lism of normal cells.

The debate whether metabolic changes such as the

Warburg effect are a consequence or even the cause of

tumorigenesis is currently starting again. Over decades,

Otto Warburg’s proposal that irreversible damage to

mitochondrial respiration – a metabolic failure – is the

primary cause of cancer has been criticized in that it

does not account for the mutations and chromosomal

abnormalities needed to disable surveillance systems

and confer an uncontrolled growth potential to tumor

cells. In our view there is dialectic interplay between

genetic and metabolic alterations during tumorigenesis

without a fixed cause–effect relationship. Exposure of

cells to non-physiological challenges such as hypoxia,

oxygen radicals produced endogenously or during

inflammation, toxic drugs or radiation increases the

risk of DNA damage. Notably, a pure metabolic per-

turbation such as the transition from normoxia to

hypoxia may give rise to an increase of ROS produc-

tion, probably at the level of complex III of the respi-

ratory chain [236]. mtDNA is more vulnerable

to damage than nDNA because it lacks protection by

histones. Of mtDNAs analyzed in various tumor types

40%–80% display mutational changes [237], a remark-

ably high incidence for this tiny piece of DNA

(16 569 bp coding for 13 polypeptides of the respira-

tory chain). Mutations of the nDNA hitting genes

involved in mitochondria biogenesis such as, for exam-

ple, enzymes of the cardiolipin synthesizing pathway,

the TCA cycle or membrane transporters may addi-

tionally contribute to mitochondrial impairment. Mito-

chondrial defects have two important implications.

First, lowered ATP production by oxidative phosphor-

ylation is compensated through an increase in glyco-

lytic ATP production by virtually the same regulatory

mechanism as that underlying the ‘classical’ Pasteur

effect that is usually elicited by reduced oxygen supply.

Second, enhanced ROS production causes a higher

rate of mutations in both nDNA and mtDNA, thereby

stabilizing a high level of ROS in a vicious cycle. Tra-

chootham et al. [238] have recently demonstrated that

tumor cells experience more oxidative stress than nor-

mal cells. Long-term enhanced oxidative stress may

drive the ‘mutator’ that is needed to generate the high

number of mutations usually found in tumor cells.

Once random nDNA mutations have hit a set of key

proteins involved in the stabilization of the genome

and the regulation of cell proliferation and apoptosis,

the transformation into a malignant cell type is accom-

plished. A persistently high level of ROS is still benefi-

cial for the tumor cell in that it enables Kras-induced

anchorage-independent growth through regulation of

the ERK MAPK signaling pathway [239]. In summary,

there is accumulating evidence that a still ongoing but
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functionally impaired mitochondrial metabolism is

indeed essential for tumorigenesis.
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