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ABSTRACT

Kinetic models are increasingly relevant in medical research. In
systems biology, more than 10 years of experience with the develop-
ment of standards and tools to construct and analyse kinetic models
exists. This has supported the sharing of kinetic models, increased
their reuse, and thereby has helped to reproduce and validate sci-
entific results. Given the expertise and the existing infrastructure,
it seems natural to consider the application and development of
standards and tools to meet the requirements of medical scientists.

In this paper, we discuss challenges and opportunities for stan-
dards and tools from systems biology in medical research, and we
put forward criteria for the safe use of simulations. We conclude that
standards, tools and infrastructure need to be extended to ensure the
quality, reliability and safety required when working with medical and
patient data. This will foster the adaptation of modelling in the clinic,
providing tools for improved diagnosis, prognosis and therapy.
Contact: dagmar.waltemath@uni-rostock.de

1 INTRODUCTION

In modern medicine, technologies complement conventional clin-
ical data with molecular and genetic information. Patient-specific
molecular profiling provides opportunities for earlier diagnosis,
more accurate prognoses and optimised therapeutic decisions [1].
The data generated from these new technologies have led to a rise
of computational approaches in medicine [2} |3} 4]].

‘Personalised Medicine’ and ‘Systems Medicine’ are two terms
that are frequently used to capture this trend for interdisciplinary
approaches in which clinical research, molecular and cell biol-
ogy, medical informatics, bioinformatics, biostatistics and systems
biology approaches join forces. Personalised medicine uses marker-
assisted diagnosis and targeted therapies derived from an individ-
ual’s molecular profile and patient data [5]. Systems medicine aims
to bring computational models closer to the clinic to shed light on
the dynamic complexity of human physiology and disease [6].

In this context, the focus for systems biology approaches has
been on the modelling of phenomena, where an understanding of
processes (kinetics) is crucial. This includes the response of cells,
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tissues and organs to drugs, e. g. [7]]; the simulation of disease pro-
gression, e. g. [8]]; and the understanding of mechanisms, as opposed
to just predicting outcomes, e. g [9].

With new technologies available to provide us with data to
identify and characterise disease relevant components, there is an
increasing demand for methodologies that enable us to study the
interactions of molecular and cellular components in a patient. Ar-
guably, the success of systems and personalised medicine relies then
on the application of kinetic models in the clinic [[10].

The construction of kinetic models for the clinic requires an
integration of clinical and patient-specific molecular data with pub-
lic databases like KEGG [11], UniProt [12], BLAST [13], En-
sembl [14], ENCODE [15]], GEO [16], STRING [17] to name only a
few. This process effectively brings together the two worlds of basic
research and clinical practice. For this union to succeed, ontologies
will play a crucial role. Standards to encode information together
with ontologies to unambiguously characterise domain knowledge,
form the basis for the development of tools that can analyse kinetic
models. These tools in turn support the sharing and reuse of mod-
els, which is also a means to validate results and generally improve
reproducibility in medical research.

Here we illustrate open challenges that need to be overcome in
future work to achieve trustworthy systems that can easily be in-
tegrated in any hospital environment or GP practice. We further
outline criteria that need to be fulfilled to ensure patient and data
safety, and to eliminate ethical concerns.

2 HURDLES IN THE APPLICATION OF SYSTEMS
BIOLOGY STANDARDS AND TOOLS

A number of challenges need to be overcome before systems biol-
ogy standards and tools can be applied in medical research. These
challenges are further detailed in the following subsections.

2.1 Access to clinical data

Almost no clinical data sets are available for integration with
models, neither are these data sets sufficiently documented in a for-
malised manner. Consequently, the selection process of clinical data
for a given model (and vice versa) is hindered. This is partly due
to patient data being sensitive, limiting its accessibility for analysis,
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but mainly due to missing incentives, guidelines and requirements
of providing data access upon publication of clinical studies.

Clinical data sets are required for testing as well as prediction
purposes. While a reoccurring complaint is the lack of suitable data
sets to test a model with, this problem is hard to overcome given
that patient data needs to be secured over unauthorised access at all
times or anonymised in a proper manner. Some efforts such as the
100,000 genome project conducted by Genomics Englan(ﬂ and the
openEHRE] project aim to provide access to structured, semantically
annotated clinical data for research purposes. However, the amount
of available data is still too limited to test models and computational
simulations reliably.

In practise, most research data are neither shared nor recycled
outside the original project team [18]]. Models are instead being
developed and used within a single clinic, e.g. by collaborative
projects that incorporate clinical research groups and computational
biology groups located in the same institution. In these settings,
however, modelling has already been applied successfully, for
example to study melanoma resistance to immunotherapy [19]].

In addition to relevant clinical data being accessible, it must be
represented in a way that it can be integrated and interpreted by both
humans and machines. This requires a dialogue not only between
healthcare providers and researchers, but also with staff recording
the data and policy makers regulating patient data records.

2.2 Good quality models and documentation

Currently, the majority of published models are not available in stan-
dard formats, and the model quality is not sufficiently documented.
In many cases, even the computational code underlying a model is
inaccessible. Without the ability of reproducing the models, they
cannot be exploited for clinical use. In addition, available models
are not fully annotated, i.e. the description of model components
and parameters are missing, hindering interpretation and integration
with other models and clinical data. Model provenance information
is not kept, leading to misinterpretations and even irreproducibility
of the original findings.

Major efforts are required to reproduce the results reported in
a publication of a computational model. Ongoing efforts such as
curation processes in BioModels [20], or the provision of fully re-
producible archives of virtual experiments in the Physiome Model
Repository [21] improve this situation. However, curation is very
slow due to the manual labour involved and seldom performed after
a model has been published. Moreover, we lack concerted efforts
for model validation, annotation, and conversion into computable
formats.

2.3 Standardised representation of models and data

The systems biology community developed a set of interoperable
standards for modeling, including the Systems Biology Markup
Language (SBML), CellML, Synthetic Biology Markup Language
(SBOL), NeuroML, Simulation Experiment Description Markup
Language (SED-ML), or BioPax [22]]. These standards, however,
are specific to the computational biology community. As a conse-
quence, sharing and/or integrating models across communities can

I'https://www.genomicsengland.co.uk/
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be challenging, as different standards are used for the representation
and annotation of the data.

Additionally, there is no consensus on which ontologies should be
used for data and model representation and to which degree of detail
models and data need to be annotated, creating further obstacles to
integrate models for simulation purposes. Extensive cross-domain
initiatives need to be built and are required to take decisions on
ontologies and standards that are not only convenient for model de-
velopers, curators and researchers, but that are also practical (from
an implementation and cost point of view) in a clinical application
scenario.

2.4 Validated predictions in a clinical context

A major hurdle for the translation of computational models into
medical research is the difficulty to proof the efficiency and pre-
dictive value of the model. Every recommendation determined by a
clinical decision support system needs to be in line with the policies
for medical care providers as issued by the health authorities in the
respective country. In order to proof health economic efficiency, ex-
tensive, potentially double-blinded, clinical trials are required that
compare model-based treatment decisions with unsupported deci-
sions by clinical staff. These clinical trials have to span over all
areas of clinical application, i.e. cover different types of diseases
as well as ranges of treatments and patients in differing health con-
ditions to assess clinical safety. Every in silico model provides an
estimation of pathological processes and therefore naturally con-
tains errors. These errors can potentially lead to wrong treatment
decisions, which is why great care needs to be taken when trans-
porting systems biology models, standards and tools into clinical
practice.

2.5 Detailed documentation of virtual experiments

Finally, it is challenging to describe the virtual experiments that can
be applied to a model. We argued before that promoting the reuse of
such virtual experiments would vastly improve the usefulness and
relevance of computational models in biomedical endeavours and
large scale biomedical research projects such as the Virtual Physi-
ological Human [23]. While models are being published and made
available, they lack descriptions of the simulation settings. These
simulation settings are required in order to reproduce and verify the
results released with the model. They indicate how a model can
be sensibly applied in medical research, and what further work is
needed to ensure patient safety. A standard for the encoding of sim-
ulation setups is SED-ML [24]. It defines the models to be used in a
virtual experiment, together with possible parametrisations and sim-
ulation setups. However, SED-ML to date encodes only for a subset
of experiments performed in clinical research. Further extensions
are needed in the standard itself. Similarly important is extended
software support.

3 CRITERIA FOR REUSABLE SIMULATION
MODULES AND SEMANTIC DATA

The reproducibility and reusability of models and model-based re-
sults have been discussed in several assays over the past years
[1OL 250 26]. One conclusion of these assays is that the reusabil-
ity of simulation models needs to be ensured, before computational
models can be considered for predictive processes in the clinic. Four
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important aspects that determine reusability are discussed in the
following subsections.

3.1 Semantic annotation to biomedical ontologies

An essential step to ensure reusability of models is a thorough se-
mantic annotation to biomedical ontologies. An ontology formally
defines concepts and relations between concepts in a knowledge do-
main [27]. Semantic annotation describes the process of linking the
entities and processes of a model to terms in relevant ontologies.
This “upgrade” from a syntactical description of model entities to a
semantic description is an established procedure in systems biology.
It allows researchers and tools alike to describe the data used in ex-
perimental studies and models. A semantic description enables not
only integration of different types of data but also reasoning over the
data, thus connecting data items (or models) to existing knowledge.
Systems biology established a system for semantic annotations of
models, using RDF together with a set of standardised relationships
[20] and resources identifiers [28]]. Recently, composite annotations
have been proposed as a means to provide exact descriptions of the
model entities [29].

In order to implement models in the clinic, the systems biology
data must be linked to biomedical data, biomedical measurements
and personalised patient data. An integration on the syntactical level
is not expressive enough to allow for automatisation, but integra-
tion on the semantic level holds the promise of overcoming this
limitation. Figure [I] illustrates the necessary steps for the seman-
tic integration of patient data, computational models, and external
data for the benefit of patients and clinical staff.

Integration on the semantic level requires high-quality, reliable
mappings of ontologies across and within domains. Ongoing efforts
such as 100,000 Genome project conducted by Genomics England
aim to represent any clinical data gathered from patients with rare
diseases or cancer, not only for treatment but also for research pur-
poses. However, while great care was taken to choose established
ontologies, such as Human Phenotype Ontology (HPO) [30], the
choice of ontologies is specific to the aims of the project and may
not be replicated by other data collections. Another ongoing effort
is the openEHR initiative that also focuses on providing access to
clinical data by rendering it in computable formats using archetypes,
templates and bindings to ontologies.

Many biomedical ontologies are maintained in online portals,
such as BioPortal or the Open Biomedical Ontologies (OBO)
Foundry web page, which provide search interfaces, web services,
version control, and mappings between ontologies [31} [32]]. How-
ever, different ontologies are used for a semantic representation due
to differences in the medical systems used in different countries.
This requires reliable mappings between these ontologies. One ef-
fort addressing the mapping between terminologies and ontologies
is the Unified Medical Language Systems (UMLS) [33]], which
to date harmonises over 150 terminologies and ontologies’} For
example, the Human Phenotype Ontology [34]], the International
Classification of Diseases |'| and SNOMED CT [35] are all inte-
grated in UMLS. So whenever data is represented with a semantic
annotation from one of these ontologies, it can be easily transferred
to the others. It is important to be aware that the transfer to other

3 lhttps://www.nlm.nih.gov/pubs/factsheets/umls.
html, accessed 14 June 2016
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ontologies is restricted by the quality of the mapping, in this case
UMLS.

Another set of ontologies to consider for this endeavour are those
encoding the versioning of models and the provenance of data en-
coded in the model. For example, PROV-O [36] is an ontology of
provenance terms that has been used in a range of applications and
thus can be expected to be easily adaptable to attach provenance
to model data. Another effort going into this direction is the On-
tology of Biomedical AssociatioN (OBAN), used for provenance
information on disease-phenotype associations text mined through
EuropePM(f] [37]. While there are a lot of ongoing efforts and
projects, further work is needed to allow for the integration of com-
putational models with a variety of independent data resources for
the purpose of clinical applications. Furthermore, works in the di-
rection of mappings and similarity measures for terms within and
across bio-ontologies should be taken into account [38]], for ex-
ample, to determine the similarity of data sets thatare annotated to
different ontologies.

3.2 Generation of safe simulation modules

Reusability depends on the availability of all model-related data
[LO]. For studies performed by medical researchers, it is particularly
important to provide full documentation of safe parameter ranges
or test case scenarios. This requires tailor-made standards for the re-
porting. The data description must ensure that unique interpretations
of simulation modules are possible without a modelling background.

In this context, a simulation module encapsulates a computational
model that has been tested, documented, annotated, and certified to
meet safety requirements. A module suitable for inclusion into a
diagnostic tool needs to provide extensive documentation and safe,
standardised software interfaces (e.g. for resetting simulation pa-
rameters or accessing and interpreting simulation results; see more
details section[3.4). The documentation of a model is clearly defined
in a Minimum Information guideline (MIRIAM) [39]. We argue
that the documentation of a simulation module for medical research
needs to be extended to also cover information on applicable vir-
tual experiments, allowed applications, and conditions under which
the data are applicable in simulations. For example, a scientist us-
ing the module has to be able to assess which parameters can safely
be changed and what are the expected sensitivities. An important
component of a module is test data for model evaluation consisting
of simulation input and output data allowing to evaluate predictive
error, sensitivity and specificity of the module.

Furthermore, a potential user also requires access to the tests with
which the parameter ranges and prediction outcomes have been as-
sessed during model development. The documentation released with
a simulation module should further detail how simulation results are
to be correctly interpreted. This is particularly relevant for the clas-
sification of results in terms of quantiles within patient cohorts. In
order to verify whether a module is safe for use, information detail-
ing the history, developer(s), input data and test results is strictly
necessary. Only if this information is provided one can evaluate if
the latest version of a module is safe for application and how the
changes made over time have affected the error rates of predictions
as well as edge-cases in simulation scenarios.

Systems biology offers tools for model version control (e.g.,
[40]). However, we note that the potential of model provenance has

5 http://europepmc.ory/
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Figure 1. A) Illustration of the integration process of computational models and data from different sources. The integration strongly relies on the availability
and detail of the ontologies used for the semantic annotations. User interfaces need to provide access to the simulation modules, but restrict the change of
parameters to ranges that are safe w.r.t. a clinical application. Systems Biology Markup Language (SBML) and CelIML are standards used to encode models,
i.e. the entities and interactions, in a computable format. Electronic Health Records (EHRs) refers to any data recorded in a hospital or GP practice. B)
Example workflow for the application of a simulation module. Semantically annotated patient data is used as input to the simulation module based on the
defined module interface. The module performs individual predictions and risk estimation based on the input data which can be evaluated within the context
of the reference ranges of the module. A proof-of-principle is available athttps://www.livermetabolism.com/gec_app/}

not yet been fully explored, and the description of model parameters
as well as a model’s quality (in terms of applicability and reliability)
is so far neither satisfactory nor standardised.

3.3 Testing procedures to ensure safety

Due to the sheer amount of data necessary to model the physiology
of a human being, the development of future diagnostic tools will
rely on previously developed, standardised simulation modules and
on thorough semantic annotation. Before models and consequently
modules can be consulted in medical predictions they need to be
tested thoroughly. This is, in theory, possible for a subset of models
in systems biology, such as those contained in the curated branch of
BioModels. All curated models have been tested to reproduce the
behavior stated in the reference publication.

For a module to be considered safe, the encapsulated model pre-
dictions must be medically reliable, i.e. they must not only capture
the underlying disease mechanisms but also adapt to the uniqueness
of each individual patient. This requirement entails that the error rate
for predictions needs to be very small and under no circumstances

can exceptions lead to failure in the intermediate computation. Due
to the diversity of data that is included into a model, physical units,
error ranges and data mappings have to be handled with special care.
It is crucial that the patient-specific data to be simulated with the
module matches the requirements of model parameters such that a
reliable prediction can be ensured.

For this purpose, standardised tests need to be in place and con-
tinuously be passed throughout development. The electrophysiology
web lab [41] is one example of a web-based tool to check the reli-
ability of models relating to the physiology of the heart. It features
a set of published models in CellML format, and applies to them
several virtual experiments. The tests check how each model re-
produces the expected behavior of a real heart under a variety of
conditions.

3.4 Standardised and secure software interfaces

In order to apply modules in clinical practice, standardised software
interfaces are required that enable the safe simulation of models (e.g.
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through restricted parameter ranges), validation of input parame-
ters, support for allometric scaling (of parameters like organ sizes
or blood flow), and the evaluation of simulation results in terms of
confidence intervals.

It is not unlikely that a model used through a diagnostic tool is
administered by a clinician, nurse or other medical staff. The simu-
lation mode must hence include a safe mode in which only defined
properties of the model/module can be adapted. However, these de-
fined properties need to cover, at the same time, the uniqueness of
each patient so that the simulation can be truly personalised. An
adaptation of the above web lab can help to provide clinicians with
an overview of possible behaviors of a system given different sets
of patient data and clinical investigations. Moreover, tool and model
developers have to safeguard the data that is used as input to the
computational model so that patient data cannot be used for other
purposes than the treatment of this patient. Otherwise obtaining con-
sent from patients to employ their data for medical purposes will
be impossible. There is an arguable potential that the models could
be improved over time as the patient data in itself can help tweak-
ing model parameters but this would have to be covered by each
patient’s consent.

4 CONCLUSION

With kinetic models being increasingly used and reused for the pre-
diction of disease risks, the monitoring of disease progression, or
for drug development, the quality and reliability of models becomes
a major concern. In this situation, medical research can benefit from
the experiences in systems biology, by incorporating existing stan-
dards, tools and infrastructure. Standards and standard-compliant
tools increase the exchangeability of models, and enable researchers
to reproduce published results. As computational models can be
readily parameterised with individual patient and cohort data, they
are well-suited for personalisation. Moreover, the models can be
embedded in pharmacokinetics and pharmacodynamics applications
used during drug development.

However, before modeling can be fully incorporated into medical
workflows, additional requirements should be met. Among these
are further standards to represent the provenance of a model and to
document valid parameter ranges under certain conditions. Further-
more, solutions for high-quality annotation of models and for the
curation of data need to be developed. Other challenges, like the
representation of uncertainties, restricted model changes and per-
sonalisation are yet unsolved and have to be addressed in future
research. A specific focus of future works should be on the defi-
nition of a minimal semantic interface that patient data has to fulfill
for a model to be applicable, i.e., a minimal set of semantically en-
coded data the model requires as input. For instance, in the case of a
regression model, all independent variables of the model must exist.

Finally, models used in the clinic need to fulfill safety require-
ments and adhere to data privacy guidelines. For example, at no
point would it be acceptable to mix data from several patients and
give a patient or other unauthorised staff access to patients’ data.

We conclude that previous work from systems biology research
can be reused to establish an infrastructure for reusable models in
the clinic. However, the existing infrastructure needs to be evaluated
thoroughly, and it needs to be extended to meet clinical standards
when working with patient data.
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